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Abstract

We show that the triply-graded Khovanov-Rozansky homology of the torus knot Tm,n

can be recovered from the finite-dimensional representation Lm
n

of the rational Cherednik

algebra at slope m
n , endowed with the Hodge filtration coming from the cuspidal character

D-module Nm
n
. Our approach involves expressing the associated graded of Nm

n
in terms of

a dg module closely related to the action of the shuffle algebra on the equivariant K-theory

of the Hilbert scheme of points on C2, thereby proving the rational master conjecture. As

a corollary, we identify the Hodge filtration with the inductive and algebraic filtrations on

Lm
n
.
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1 Introduction

1.1 Rational Cherednik algebras and link homology

Recent years have seen extraordinary connections between seemingly unrelated mathematical

objects across different fields, indexed by pairs of coprime natural numbers m,n. Topologically,

there is the (m,n)-torus knot Tm,n, which winds m times around a circle in the interior of the

torus, and n times around its axis of rotational symmetry. Surprisingly, the Khovanov-Rozansky

homology ([Kho07]) of Tm,n can be captured by the following representation-theoretic object.
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Write c = m
n . Let h denote the (n−1)-dimensional standard representation of the symmetric

group Sn. The rational Cherednik algebra Hc (also called rational DAHA) is a deformation of

D(h)#Sn at the parameter c where D(h) is the ring of differential operators on h. The algebra

Hc has a unique finite-dimensional irreducible representation which we denote by Lc. Under the

action of the Euler field hc, Lc decomposes into a direct sum of eigenspaces
⊕

ℓ∈Z Lc(ℓ).

Conjecture 1.1. ([GORS14, Conjecture 1.2]) There exists a filtration F on Lc compatible with

the order filtration on Hc and the hc-grading such that there is an isomorphism

HHH(Tm,n) ∼= HomSn

(
∧• h, grF•

(
⊕ Lc(•)

))
.

of triply graded vector spaces such that the following gradings are matched

internal q-grading↔ hc-grading

Hochschild homological a-grading↔ wedge degree of ∧•h
usual homological t-grading↔ filtration on Lc

In this paper for any coprime (m,n), m > n we will define a Hodge filtration FH on Lc and

show that

Theorem 1.2. (Corollary 5.15) Conjecture 1.1 holds with respect to the Hodge filtration FH

when m > n such that (m,n) = 1.

The Hodge filtration is defined on LSn
c for all m > 0, in which cases we also have that

Conjecture 1.1 holds for the degree of a = 0.

Calaque-Enrique-Etingof [CEE09] demonstrated that LSn
c is the Hamiltonian reduction of

the cuspidal character D(sln)-module Nc. We define FH on Lc by examining the Hodge module

structure on Nc following Saito’s theory. Using the Springer resolution and Laumon’s result on

pushforward of filtered D-modules, we are able to write the associated graded of Nc in terms

of an explicit dg module, which we call the cuspidal dg module (for further discussion, see 1.3).

The cuspidal dg module is closely related to the nilpotent commuting variety, which has the

punctual Hilbert scheme of points in C2 as a GIT quotient. In this sense, the appearance of the

equivariant K-theory of the Hilbert scheme of points on C2 that we will discuss below is natural.

1.2 Hilbert schemes and the rational master conjecture

Another avatar of the theme of two coprime integers comes from the spherical DAHA. In

[BS12], Burban and Schiffmann show that the spherical DAHA can be generated by elements

Pm,n labeled by pairs of integers. Using the generator Pm,n, Cherednik [Che13] reconstructs the

refined Chern–Simons knot invariant in the sense of Aganagic-Shakirov ([AS12]) of the m,n-

torus knot in the form of the three-variable torus knot superpolynomial.

The generator Pm,n is also closely related to the finite-dimensional representation Lm
n

via

the geometry of the Hilbert scheme. In [SV13], Schiffmann and Vasserot define an action of

the spherical DAHA on KC∗×C∗
(Hilbn(C2)), the equivariant K-theory of the Hilbert scheme of

points on C2. In [GN15], Gorsky and Neguţ propose that the bigraded Frobenius character of
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Lc can be read off from the action of Pm,n on KC∗×C∗
(Hilbn(C2)). In this paper, we settle their

conjecture:

Theorem 1.3. (Theorem 5.13) The bigraded Frobenius character of Lc with respect to the Hodge

filtration and the Euler field is given by

chSn×C∗×C∗(Lc) = (Pm,n · 1)(q, q−1t).

Theorem 1.3 is related to Theorem 1.2 as follows. The computation of the Khovanov-

Rozansky homology for torus links had long been a challenging open problem, which was finally

addressed by Elias, Hogancamp, and others ([Hog17, EH19, Hog18]) through recursive methods.

The culmination of this work is a shuffle conjecture style formula [Mel22]. From this formula, it

follows that the Euler characteristic of HHH(Tm,n) equals the knot superpolynomial of Tm,n, in-

terpreted as a certain matrix coefficient of the action of Pm,n on KC∗×C∗
(Hilbn(C2)), as observed

in [GN15]. Therefore, Theorem 1.3 implies Theorem 1.2.

It is worth noting that in the case of m = n+1, Ln+1
n

is isomorphic to the space of diagonal

harmonics [Gor03] and Pn+1,n · 1 can be identified with ∇en [GN15, Corollary 6.5], where ∇
is the nabla operator ([BG98]) and en is the elementary symmetric polynomial of degree n.

Therefore, Theorem 1.3 may be viewed as a generalization of the master conjecture proved by

Haiman [Hai03, Theorem 4.2.5].

1.3 DG punctual flag Hilbert schemes and the work of Ginzburg

Notably, as observed by Neguţ in [Neg15a], the action of the shuffle generators Pm,n on

KC∗×C∗
(Hilbn(C2)) is not visible using the classical Nakajima correspondence, and the notion

of a flag Hilbert scheme turns out to be necessary. Indeed, there has been some intriguing open

conjectures relating the coherent category of the flag Hilbert scheme and the homotopy category

of Soergel bimodules ([GNR21]). However, it is well-known that the naive flag Hilbert scheme is

highly singular. A remedy is to rather use a dg scheme: the dg flag Hilbert scheme FHilbndg(C2)

is defined independently in [Gin12] and [GNR21]. In spite of its derived nature, FHilbndg(C2) is

by definition a local complete intersection.

In [Gin12], Ginzburg studies the isospectral commuting variety by expressing the associated

graded of the Harish-Chandra D-module with respect to the Hodge filtration in terms of the

dg flag commuting variety. In type A, the isospectral commuting variety has the isospectral

Hilbert scheme as a GIT quotient and the dg flag commuting variety has the dg flag Hilbert

scheme as a GIT quotient. Therefore, the result in loc. cit. implies that the pushforward of

the structure sheaf of FHilbndg(C2) to Hilbn(C2) is the Procesi bundle. Using the main result of

loc.cit. plus examination into the singular support of the Harish-Chandra D-module, Gordon

gives an alternative proof of the Macdonald positivity conjecture ([Gor12]).

We adapt a very similar approach as [Gin12] in the setting of nontrivial monodromy and

naturally obtain what we call the cuspidal dg module. We also define a Catalan dg module,

whose GIT quotient specializes to the dg punctual flag Hilbert scheme defined in [GNR21]. We

show the pushforwards of these two dg modules to the commuting variety correspond to the

same equivariant K-theory classes and we state the sheaf-theoretic identification as a conjecture
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(Conjecture 5.3). While this paper was under editing, Gorsky and Neguţ generously shared a

copy of their preprint [GN24]. Their Conjecture 2.2 is a non-derived version of our Conjecture

5.3.

1.4 Filtrations and future directions

Regarding Conjecture 1.1, the authors of [GORS14] have proposed several filtrations: the

algebraic(Chern) filtration, the inductive filtration and the geometric(perverse) filtration, which

are shown to coincide ([OY16], [Ma24]). As a corollary of Theorem 1.2, we show that

Proposition 1.4. (Proposition 5.18) The Hodge filtration equals the inductive and algebraic

filtrations on Lc when m > n for coprime m,n and on LSn
c for all m > 0 coprime to n.

The inductive filtration is also only defined on Lc for m > n, but the algebraic filtration is

well-defined on Lc for all m > 0 with (m,n) = 1. As a corollary of Proposition 1.4, we also have

that

Proposition 1.5. (Proposition 5.20) For all integers m > 0 coprime to n, with respect to the

algebraic filtration, Conjecture 1.1 holds.

There are two natural generalizations of our setting: replacing Hilbn(C2) by Gieseker vari-

eties and allowing m,n to be non-coprime. The former is related to the study of representations

of a quantized Gieseker moduli algebra ([EKLS21]) and the study of higher Catalan numbers

and a finite Shuffle conjecture ([GSV23]). The latter is related to the study of rational DAHA

representations of minimal support and torus link homology ([EGL15]). Despite the current

absense of definitions of the inductive, algebraic and geometric filtrations in these settings, we

believe that a notion of Hodge filtration is still available, and via a similar method, bigraded

Frobenius characters can be computed and related to the corresponding link invariants. On

the other hand, it is conjectured that the stable envelopes on Hilbn(C2) are closely related to

the DAHA Verma modules [GN17, Conjecture 6.5]. In particular, suitable filtrations on Verma

modules, satisfying properties such as compatibility with the parabolic induction and restriction

functors, are necessary for such a program. We believe the Hodge filtration might be the correct

candidate; however, it is neither clear nor has it been explored which D-modules correspond to

the Verma modules. We plan to investigate these directions in future work.
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Ginzburg, for suggesting this problem. His previous work forms the foundation of almost all

the arguments presented here, and this paper would not have been possible without his guid-
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reference [Neg22, (2.34) and (2.35)], which plays an important role in the proofs in Section 5.2.

Additionally, I would like to thank Eugene Gorsky for valuable discussions and for giving me

the opportunities to present this work while it was still in progress. My genuine thanks also go
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2 Quantum Hamiltonian reductions and the Z-algebra construc-

tion

Fix an integer n ≥ 2. Let G = GLn with Lie algebra g := gln. Let G = SLn, g = sln. Let

W = Sn be the Weyl group.

2.1 Representations of Rational Cherednik algebras

Fix the maximal torus T ⊂ G with Lie algebra h ⊂ g, consisting of diagonal matrices. For

any c ∈ C, we define the rational Cherednik algebra Hc := Hc(h) to be the C-algebra generated

by h, h∗ and W with relations

[x, x′] = [y, y′] = 0, wxw−1 = w(x), wyw−1 = w(y)

[y, x] = x(y)−
∑
s∈S

c⟨αs, y⟩⟨α∨s , x⟩s

where x, x′ ∈ h∗, y, y′ ∈ h, w ∈W , S ⊂W is the set of reflections and αs, resp. α
∨
s , is the root,

resp. coroot, associated to s. In particular H0 = D(h)#Sn (for a definition of D(h), see Section

2.2.1).

For any W -representation τ , we may regard it as a C[h∗]#W -representation by requiring

C[h∗] to act trivially and define the Verma module

Mc(τ) = Hc ⊗C[h∗]#W τ.

The Verma module Mc(τ) has a maximal proper submodule with an irreducible quotient Lc(τ).

Theorem 2.1. ([BEG03, Theorem 1.2]) When c = m
n for positive integer m coprime to n, the

only irreducible finite-dimensional representation of Hc is Lc(triv). Moreover, only when c = m
n

for integer m coprime to n does Hc have finite-dimensional representations.

Below, we will simply write Lc := Lc(triv). Let O(Hc) denote the BGG category O of the

rational Cherednik algebra, which is a full subcategory of Hc−mod whose objects are finitely

generated over Hc such that the S(h) action is locally nilpotent ([GGOR03]). Then as τ varies

over irreducible W -representations, the modules Lc(τ) give a complete list of irreducible objects

in O(Hc).

Let e := 1
n!

∑
w∈W w be the symmetrizing idempotent in Hc. Then inside Hc, eC[h] ∼= C[h]W

and eS(h) ∼= S(h)W . The spherical Cherednik algebra is defined by Ac := eHce. By [BE09,

Theorem 4.1], for all c satisfying

c /∈ {a
b
∈ (−1, 0)|a, b ∈ Z, 2 ≤ b ≤ n} (1)

there is a Morita equivalence

Hc−mod→ Ac−mod, M 7→ eM.

Denote the BGG category O of the spherical Cherednik algebra by O(Ac).
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Let R+ be a chosen set of positive roots. Write δ =
∏

α∈R+ α. Let hr = {δ ̸= 0} denote

the regular locus of h, i.e., when the diagonals are pairwiese distinct. The action of Hc on

C[h] ∼= Hc ⊗C[h∗]#W C gives the Dunkl embedding of Hc into D(hr)#W . In particular, assume

{xi} is a basis of h∗ and {yi} is its dual basis of h. Then the Dunkl operator associated to yi is

Dyi,c := ∂xi − c
∑

s∈S
αs(xi)
αs

(1− s).

Localized at δ :=
∏

α∈∆+ α, we have that (Hc)δ ∼= D(hr)#W. Define a symmetry on (Hc)δ
by sending

x 7→ x, Dyi,c 7→ Dyi,−c, w 7→ sign(w)w

which restricts to an isomorphism Ad → δ−1A−d−1δ ([GGS09, 5.6, 5.8]). This induces an

equivalence of categories, which we will use later in the paper:

Ωd = Ω−1−d−1 : Ad−mod ∼= A−d−1−mod.

2.2 Quantum Hamiltonian reduction functors

2.2.1 Notations and conventions on D-modules

For any smooth algebraic variety X, denote the sheaf of differential operators on X by DX

and write D(X) := Γ(X,DX). Suppose {xi} is a local coordinate system of X in an affine open

subset U . Then DX(U) is the algebra generated by xi, ∂xi where ∂xi is the partial derivative

along the direction of xi, satisfying the relations that [∂xi , xj ] = δi,j .

We define the order filtration F ord on DX by setting

(F ord
k DX)(U) =

∑
|α|≤k

O(U)∂α
x

i.e., it is the filtration induced by setting deg(x) = 0 and deg(∂x) = 1.

Let π : T ∗X → X be the projection map. Then with respect to the order filtration, we have

that

grordDX
∼= π∗OT ∗X .

For any coherent DX -module M with an increasing filtration F , we say (M,F ) is a filtered

DX -modules if FiM = 0 for i≪ 0 and FiDX ·FjM ⊂ Fi+jM . With the latter condition, we are

able to define an associated coherent sheaf on OT ∗X by

g̃rF (M) := π−1grFM ⊗π−1π∗OT∗X
OT ∗X .

We say the filtration F of M is good if g̃rF (M) is a coherent sheaf on T ∗X.

The support of g̃rF (M) in T ∗X is independent of the choice of a good filtration, which we

will call the singular support of M and denote by SS(M).

2.2.2 Mirabolic D-modules and Cherednik algebras

Let V = Cn be the standard representation of G and G = g× V . Let τ : g→ D(G) denote

the embedding induced by differentiating the diagonal action of G on G. Our convention is that
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for any f ∈ O(G) and g ∈ G,

(g · f)(x) = f(g−1 · x). (2)

In particular, let 1 ∈ g denote the identity matrix. Then τ(1) = −
∑n

i=1 vi∂vi .

Define the shifted embedding τd by a constant d ∈ C by (later we will take d to be −c)

τd : g→ D(G), x→ τ(x)− d · tr(x).

Define

Λ := {(X,Y, i, j) ∈ g×N × V × V ∗|[X,Y ] + ij = 0},

which is a Lagrangian subvariety of T ∗G. Following [BG15], we call a finitely generated DG-

module mirabolic if it is locally finite as a τ(g)-module and its singular support is contained in

Λ. Denote the category of mirabolic DG-modules by C (G).

Fix a nonzero element vol ∈
∧n V ∗. Following [BFG06, (5.3.2)], we define a regular function

on G by

s(x, v) = ⟨vol, v ∧ xv ∧ · · · ∧ xn−1v⟩. (3)

Denote Gcyc := {(x, v) ∈ G|s(x, v) ̸= 0}, which is equivalently the locus when v is a cyclic vector

for x, i.e., C[x]v = V . It is well-known that the composition of the projection Gcyc → g and the

Chevalley map g→ h/W is a principal G-bundle, such that the diagonal G-action on Gcyc acts

freely on the fibers. Therefore we have an isomorphism

ι : C[Gcyc]
G ∼= C[h]W . (4)

Note that s−d ∈ C[Gcyc]
τd(g). In fact C[Gcyc]

τd(g) = C[Gcyc]
Gs−d. Moreover,

Theorem 2.2. ([GG06, Theorem 1.3.1],[GGS09, Theorem 8.1] The radial part map

D(G)G → D(h/W ), u 7→
[
C[h/W ] ∋ f 7→ ι

(
sdu

(
s−dι−1(f)

))]
induces an isomorphism

Hd : (D(G)/D(G)τd(g))
G ∼= Ad−1, (5)

which induces the quantum Hamiltonian reduction functor

Hd : C (G)→ O(Ad−1), M 7→ Γ(G,M)τd(g)

such that

C (G)/Ker(Hd) ∼= O(Ad−1).

Remark 2.3. The “−1” factor in the subscript of Ad−1 is consistent with the classical result of
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Harish-Chandra that

D(g)G → D(h/W ), u 7→
[
C[h/W ] ∋ f 7→ δ(u|C[h/W ])

(
δ−1f

)]
induces an isomorphism

(
D(g)/D(g)ad(g)

)G ∼= D(h)W . Here δ is the product of all positive roots

and the restriction u|C[h/W ] is taken with respect to the Chevalley isomorphism C[g]G ∼= C[h]W .

2.3 Cuspidal mirabolic D-modules

2.3.1 Functors on D-modules

Let f : X → Y be a morphism of smooth algebraic varieties. Let ΩX/Y = ΩX ⊗ f∗ω−1Y be

the relative canonical bundle.

Define DX→Y := f∗DY and DY←X := DX→Y ⊗OX
ΩX/Y . There are a (DX , f−1DY )-bimodule

structure on DX→Y and a (f−1DY ,DX)-bimodule structure on DY←X ([HTT08, 1.3]).

Suppose M is a DX -module and N is a DY -module. We define the D-module pullback

of N to be f †N := DX→Y ⊗L
f−1DY

f−1N and the D-module pushforward of M to be f†M =

Rf∗(DY←X ⊗L
DX

M).

One can similarly define the proper pushforward f! of a D-module using the Verdier duality.

When i is a locally closed embedding, we define the minimal extension functor i!∗ to be the

image under the canonical morphism i! → i†.

Definition 2.4. We say a local system on a locally closed subset U
i−→ X is clean if its minimal

extension coincides with the extensions using i† or i!.

2.3.2 Cuspidal local systems

Let N be the subvariety in g consisting of nilpotent matrices. Then the 0 fiber of the

fibration Gcyc → h/W is

U := {(x, v) ∈ N × V |s(x, v) ̸= 0}.

The diagonal G action on U is transitive and free. Hence π1(U) = Z. We have that g · s =

det(g)−1s for any g ∈ G and thus every simple local system on U of finite order monodromy is

given by the multi-valued section sa for some rational number a. We will denote the DU -module

corresponding to such a local system by Ea.
Let Nr denote the unique regular G-orbit in N , fix an element x ∈ Nr and write StabG(x)

for the stablizer of x in SLn. Then the fibration

StabG(x) // G

��
Nr
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induces exact sequence

1 = π1(G)→ π1(Nr)→ π0(StabG(x))→ 1

which implies π1(Nr) ∼= π0(StabG(x)) = π0(Z(G)) = Z/nZ. Moreover, every simple local system

on Nr of finite order monodromy is defined by the representation of Z/nZ given by e2πib for

some b ∈ 1
nZ. We will denote the DNr -module corresponding to such a local system by Fb. Both

Ea and Fb are G-equivariant.

The projection U → N has image inside Nr and the fibers of this projection are isomorphic

to F := Cn−1 × C∗. The fibration

F // U

��
Nr

induces an exact sequence

1→ (Z = π1(F))
n−→ (Z = π1(U))→ (π1(Nr) = Z/nZ)→ 1.

It follows that Ea is the pullback of the local system Fa on Nr for a ∈ Z
n .

2.3.3 Cuspidal mirabolic D-modules and DAHA representations

Let c = m
n for positive integer m coprime to n.

Definition 2.5. • The cuspidal character Dg-module with parameter c is the minimal ex-

tension of the local system Fc to g, which we denote by Nc.

• The cuspidal mirabolic DG-module of parameter c is defined to be the minimal extension,

i.e !∗-extension, of Ec to G, which we denote by Nc.

By [Lus86], Fc is clean. On the other hand, Ec is not clean, but we have the following:

Lemma 2.6. We have Nc
∼= Nc ⊠OV as SLn-equivariant DG-modules. Moreover

SS(Nc) = {(x, y) ∈ N ×N |[x, y] = 0} × V. (6)

Proof. The function s has degree n along the direction of V . Since c ·n = m, the local system Ec,
defined by the multi-valued function sc, has no monodromy along the V direction. Therefore the

minimal extension of Ec to Nr×V is Fc⊠OV and the first statement follows from the cleanness

of Fc. On the other hand, it is known that the singular support of a cuspidal character D-module

equals {(x, y) ∈ N ×N |[x, y] = 0} and hence the second statement of the lemma follows.

Theorem 2.7. ([CEE09, Theorem 9.19])

• There is a A−c−1-action on (Γ(g,Nc)⊗ SymmV )SLn.

• Under this action, (Γ(g,Nc)⊗ SymmV )SLn is isomorphic to Ωc(eLc).
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Corollary 2.8. We have H−c(Nc) ∼= Ωc(eLc) as A−c−1-modules.

Proof. Follows from Lemma 2.6, Theorem 2.7 and the fact that C[V ]τ−c(1) = SymmV .

2.4 Hilbert schemes of points

Let Hilbn := Hilbn(C2) be the moduli space of ideals of colength n in C[x, y]. It is a smooth

and quasi-projective variety of dimension 2n. The Hilbert-Chow map Hilbn → (C2)n/Sn, defined

by sending a colength n ideal I to the subvariety defined by the quotient C[x, y]/I, is a resolution

of singularity.

Define

H̃ilbn := {(X,Y, v) ∈ g× g× V |[X,Y ] = 0,C[X,Y ]v = V }red

where the subscript red refers to taking the reduced structure. The diagonal G-action on H̃ilb is

free and the resulting GIT quotient is H̃ilbn//G = Hilbn([Nak99]).

We also define

H̃ilbn0 = (N ×N × V ) ∩ H̃ilbn

which is a open subvariety of the singular support (6). The GIT quotient Hilbn0 := H̃ilbn0//G is

the punctual Hibert scheme which is the zero fiber of the Hilbert-Chow map and is irreducible

of dimension n− 1.

Let V be the tautological vector bundle on Hilbn of rank n characterized by V|I = C[x, y]/I
for any I ∈ Hilbn. Define OHilbn(1) = ∧nV. Denote by Vst the direct summand of V such that

V := OHilbn ⊕ Vst.

2.5 The Gordon-Stafford functor

In [GS05] Gordon and Stafford define a functor from the category of Ac-modules equipped

with a good filtration (i.e., filtrations for which the associated graded is finitely generated as a

C[h×h]W -module) to the category of coherent sheaves on Hilbn(C2), motivated by the following

diagram.

? OHilbn

Ac C[h× h]Sn

gr

Hilbert-Chow

gr

The definition of their functor, which we denote by GS is based on the Proj construction

of the Hilbert scheme due to Haiman [Hai98, Proposition 2.6]. Let J0 = C[h]W and for each

k ≥ 1 let Jk = (C[h]sign)k be the product of k copies of J1 in C[h]. Put J = ⊕k≥0Jk. Then

Hilbn = Proj(J). Therefore, any finitely generated graded J-module gives a coherent sheaf on

Hilbn.

We define two subspaces in (Hd)δ:

d+1Pd := eHdδe−, dQd+1 := e−δ
−1Hd+1e.

Both d+1Pd and dQd+1 inherit from (Hd)δ the order filtration such that deg(x) = 0, deg(y) = 1.
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For any d ∈ C, the isomorphism

eHde ∼= eδ−1Hd+1δe

gives a (Ad+1,Ad)-module structure on d+1Pd and a (Ad,Ad+1)-module structure on dQd+1.

Thus we can inductively define for any k ∈ Z>0,

d+kPd := d+kPd+k−1 ⊗Ad+k−1 d+k−1Pd,

and similarly for d−kQd. We equip d+kPd and d−kQd with the tensor product filtrations.

For any A−d−1-module L, one has ([GGS09, Proposition 5.8])

d+kPd ⊗Ad
Ω−d−1L ∼= Ω−(d+k)−1(−(d+k)−1Q−d−1 ⊗A−d−1

L). (7)

Moreover, c+kPc is a (Ac+k,Ac)-module and hence defines a shift functor

Sc,k : Ac−mod→ Ac+k−mod, M 7→ c+kPc ⊗Ac M.

If M is equipped with a filtration, one equips Sc,k(M) with the tensor product filtration.

Now for an Ac-module M equipped with a good filtration F , the Gordon-Stafford functor

associates to (M,F ) a coherent sheaf on Hilbn defined by

GS(M,F ) = Sh(gr
⊕
k≥0

Sc,kM)

where we take associated graded with respect to the tensor product filtration and Sh denotes

the sheaf associated to the graded module.

2.6 Relating the functors

The parameter c in this subsection can be any complex number.

2.6.1 Compatibility of filtrations

Let M ∈ C (G) be a mirabolic D-module endowed with a good filtration F . Write (M,F ) =

Γ(G, (M, F )). The filtration F restricts to a filtration on M τ−c−k(g) for any k ∈ Z≥0 and hence

also on L := Ω−c−1 ◦H−c(M) as Ω−c−1 preserves the order filtration.

For any G-module E, write Edet−k
:= {f ∈ E|g · f = det(g)−kf,∀g ∈ G}. Also, denote

Dd(G) := D(G)/Dd(G)τd(g). Then there is a homomorphism

ϕk
M : D−c(G)det

−k

⊗A−c−1 M
τ−c(g) →M τ−c−k(g) (8)

given by the left multiplication of D(G) on M . By [BG15, Theorem 1.3.5], ϕk
M is an isomorphism

of A−c−k-modules.

Moreover, by [GGS09, Theorem 5.3(1)], when each of the rational numbers −c − 1,−c −

11



2, · · · ,−c− k − 1 satisfies the condition (1), there is an isomorphism

D−c(G)det
−k ∼= −c−k−1Q−c−1 (9)

of filtered modules with respect to the order filtrations on D(G) and (Hc)δ.

Using (7), we have

Ωc+k(c+kPc ⊗Ac L) = −(c+k)−1Q−c−1 ⊗A−c−1 Ωc(L).

The tensor product filtration on the right hand side is induced from the filtration on L and the

order filtrations on A−c−1 and −(c+k)−1Q−c−1. By (9), we have a filtered isomorphism

Ωc+k(c+kPc ⊗Ac L)
∼= D−c(G)det

−k

⊗A−c−1 M
τ−c(g). (10)

Consider the tensor product filtration F T on D−c(G)det
−k ⊗A−c−1 M τ−c(g) and the sub-

filtration on M τ−c−k(g). By definition of a filtered D(G)-module, ϕk
M is a filtered homomorphism,

i.e., for any i ≥ 0,

ϕk
MF T

i

(
D−c(G)det

−k

⊗A−c−1 M
τ−c(g)

)
⊂ Fi(M

τ−c−k(g)).

This is not an equality in general, i.e., ϕk
M is not necessarily a filtered isomorphism. Given (10),

we see that ϕk
M is a filtered isomorphism if and only if

grF
T
Sc,kL ∼= grFΩ−c−k−1M

τ−c−k(g). (11)

2.6.2 Commutativity of the diagram

Let FCG(G) be the abelian category whose objects are pairs (M, F ), where M is a G-

equivariant mirabolic D-module and F is a good filtration on M. We define a descent functor

Ψc : FCG(G)→Coh(Hilbn)

(M, F ) 7→descc(g̃r
FM|

H̃ilb
) := Sh

⊕
ℓ≥0

Γ(H̃ilb, grFM)τ−c−ℓ(g) (12)

whose essential image lands in Coh(Hilbn1 ) where Hilbn1 ⊂ Hilbn is the preimage of {(x, 0) ∈
(Cn)2}/Sn under the Hilbert-Chow map. Later we will write desc := desc0.

Remark 2.9. Since sln is simply connected, any sln-action on a coherent sheaf can always

be integrated into an SLn-action. However, whether a gln-action on a coherent sheaf can be

integrated into a GLn-action depends on whether the center acts by integer eigenvalues. In (12),

we consider shifted descent with respect to a gln-action that may have non-integer eigenvalues.

When the eigenvalues lie within −c+Z, taking descc is equivalent to first defining an integrable

gln-action by precomposing the original action with τc and then taking GLn-invariants.

Let FO(Ac) be the abelian category of well-filtered (i.e., equipped with a good filtration)

Ac-modules whose essential image under the forgetful functor lies in O(Ac).

12



Let x = (xij) be the standard coordinates of gln and (∂) = (∂xij )1≤i,j≤n. Let {xi} and {yi}
be dual bases of h∗ and h.

Denote h := 1
2

∑
1≤i,j≤n(xij∂xij + xij∂xij ) and hc := Ω−c−1(H−c(h)) = 1

2

∑n
i=1(xiyi + yixi).

(The homomorphism H−c is defined in (5).)

For any M ∈ FCG(G), resp. L ∈ FO(Ac), the action of h, resp. hc, is semisimple and

induces a Z-grading on M, resp. L. This grading together with the filtration induces a C∗×C∗-
equivariant structure on Ψc(M), resp. GS(L). On the other hand, the torus C∗ × C∗ acts on

C2 by the scalar action on coordinates and hence acts on Hilbn.

The grading on Hilbn induced by the filtration corresponds to the embedding C∗ ↪→ C∗×C∗,
t 7→ (1, t), while the action of h, resp. hc, corresponds to the anti-diagonal embedding of

C∗ ↪→ C∗ × C∗: t 7→ (t, t−1) on Hilbn.

Let CohC
∗×C∗

(Hilbn) denote the category of C∗×C∗-equivariant coherent sheaves on Hilbn.

Consider the following diagram:

FCG(G)
Ω−c−1◦H−c

yy

Ψc

((
FO(Ac)

GS // CohC
∗×C∗

(Hilbn)

(13)

Proposition 2.10. Let (M, F ) ∈ FCG(G) and (M,F ) = Γ(G, (M, F )). Suppose that −c − k

satisfies (1) for all k ∈ N. Then the following are equivalent

(a) Ψc(M) ∼= GS ◦ Ω−c−1 ◦H−c(M). That is, the diagram (13) commutes.

(b) ϕℓ
M (defined in (8)) is a filtered isomorphism for all ℓ≫ 0.

(c) ϕℓ
M is a filtered isomorphism for all ℓ ≥ 0.

Proof. Let L = Ω−c−1 ◦Hc(M). By definition

GS(L) = Sh(
⊕
ℓ≥0

grF
T
Sc,ℓL)

where F T denotes the tensor product filtration induced by the filtration on L.

On the other hand,

Ψc(M) = Sh(
⊕
ℓ≥0

Γ(H̃ilb, grFM)τ−c−ℓ(g))

Therefore, the equality GS(L) = Ψc(M) is equivalent to

Γ(H̃ilb, grFM)τ−c−ℓ(g) ∼= grF
T
Sc,ℓL

when ℓ≫ 0.

By [GGS09, Proposition 7.4]

Γ(H̃ilb, grFM)τ−c−ℓ(g) = Γ(T ∗G, grFM)τ−c−ℓ(g) = grFΓ(G,M)τ−c−ℓ(g)

13



for ℓ≫ 0, because H̃ilb is the semistable locus with respect to det.

Since Ω−c−ℓ−1 preserves filtration, i.e., grFΩ−c−ℓ−1M
τ−c−k(g) ∼= grFM τ−c−ℓ(g), given (11) we

conclude that (a) is equivalent to (b).

As for the implication (b) ⇒ (c), for any k ≥ 0, take ℓ≫ 0 and consider

D−c(G)det
−ℓ ⊗A−c−k−1

D−c(G)det
−k ⊗A−c−1 M

τ−c(g)
id⊗ϕk

M//

mul⊗id
��

D−c(G)det
−ℓ ⊗A−c−k−1

M τ−c−k(g)

ϕℓ
M
��

D−c(G)det
−ℓ−k ⊗A−c−1 M

τ−c(g)
ϕℓ+k
M //M τ−c−ℓ−k(g)

Here the map mul : D−c(G)det
−ℓ ⊗A−c−k−1

D−c(G)det
−k → D−c(G)det

−ℓ−k
is defined by multipli-

cation. By [GGS09, Lemma 5.2(2)], mul is a filtered isomorphism. Also, by assumption, ϕℓ+k
M ,

ϕℓ
M are filtered isomorphisms. As a result, ϕk

M is also a filtered isomorphism. This concludes

the proof of the proposition.

3 Hodge filtration on the cuspidal mirabolic D-module

From now on, c = m
n for a positive integer m coprime to n.

Fix the Borel subgroup B ⊂ G with Lie algebra b ⊂ g of upper triangular matrices.

3.1 Defining the Hodge filtration

Write n = [b, b] the nilpotent radical and nr = n ∩Nr. We give n coordinates by
0 x1 ∗ ∗ ∗ ∗
0 0 x2 ∗ ∗ ∗

· · · ∗ ∗
0 0 0 · · · 0 xn−1
0 0 0 · · · 0 0

 (14)

Then nr = n\D whereD is a simple normal crossing (SNC) divisor defined byD := {x1x2 · · ·xn−1 =
0}.

The restriction of Ec to U0 := {(x, v) ∈ n × V |s(x, v) ̸= 0} is a local system given by the

multi-valued function

sc|U0 = xcx
2c
2 · · ·x

(n−1)c
n−1 vmn . (15)

Similarly, L0 := Fc|nr is defined by the multi-valued function

sc0 := xc1x
2c
2 · · ·x

(n−1)c
n−1 . (16)

Let F0 be the order filtration on L0. Then (L0, F0) defines a variation of Hodge structure of

rank 1.

14



Write i0 : nr ↪→ n. Saito’s theory [Sai90] (as stated in [Pop18, Theorem 4.3.5]) implies that

there exists a unique Hodge module structure on LD := (i0)†L0. Following [Pop18, 4.4], Hodge

filtrations across SNC divisors can be described explicitly as follows.

First of all, we have that

Γ(n,LD) = D(n)/
( n−1∑
i=1

D(n)(xi∂xi + ic) +D(n)S([n, n])
)
.

The Dn-module LD is a regular meromorphic extension of L0 across the SNC divisor D.

Inside LD, we have Deligne’s canonical extension L>−1
0 ([Del70]), which is a lattice extending L0

such that the residues ([HTT08, 5.2.2]) of the meromorphic connection under this lattice along

all the components of D lie in (−1, 0]. By lattice, we mean L>−1
0 is a rank 1 free On-module

such that

LD = L>−1
0 ⊗On On[D] = Dn · L>−1

0

Here On[D] is the sheaf of rational functions on n that are regular on U0.

In our case, for

⌈sc0⌉ := x
⌈c⌉
1 x

⌈2c⌉
2 . . . x

⌈(n−1)c⌉
n−1 , (17)

we can compute that

sc0⌈sc0⌉−1 = x
c−⌈c⌉
1 x

2c−⌈2c⌉
2 . . . x

(n−1)c−⌈(n−1)c⌉
n−1

and

xi∂xi(s
c
0⌈sc0⌉−1) = ic− ⌈ic⌉ ∈ (−1, 0], i = 1, . . . , n− 1.

Hence L>−1
0 = On⌈sc0⌉−1sc0 ⊂ L0.

On L>−1
0 we have the filtration

F 0
kL

>−1
0 = L>−1

0 ∩ (i0)∗F
0
kL0 = On⌈sc0⌉−1

for all k ≥ 0 and 0 otherwise. Hence the induced filtration on Dn · L>−1
0 is

FD
k (Dn · L>−1

0 ) =
∑

F ord
i DnF

k−i
0 L>−1

0 = (F ord
k Dn) · ⌈sc0⌉−1

for all k ≥ 0 and 0 otherwise.

The pushforward of the Hodge module (LD, F0) along in has underlying Dg-module L =

(in)†LD with the Hodge filtration filtration FL on L defined by the formula ([Pop18, 1.5])

Γ
(
FL
k ((in)†(LD, F

D))
)
=Im

((∑
q

Γ(F ord
q Dg←n)⊗ Γ(FD

k−q(LD))
)
→ Γ

(
(in)†(LD)

))
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3.1.1 Associated graded of L

Recall that U0 := {(x, v) ∈ n × V |s(x, v) ̸= 0}. Let L be the minimal extension of Ec|U0

to G. One may run the same procedure to define a Hodge module structure on L, which we

denote by (L, FL, i!∗(L0)Q). Here i : U0 → G and (L0)Q is the locally constant sheaf underlying

L0 := Ec|U0 .

Define

⌈µc⌉ = (⌈µc⌉(1), · · · , ⌈µc⌉(n)) := (⌈c⌉, ⌈2c⌉ − ⌈c⌉, . . . , ⌈nc⌉ − ⌈(n− 1)c⌉). (18)

and

⌊µc⌋ = (⌊µc⌋(1), · · · , ⌊µc⌋(n)) := (⌊c⌋, ⌊2c⌋ − ⌊c⌋, . . . , ⌊nc⌋ − ⌊(n− 1)c⌋). (19)

Then (⌈µc⌉(1), · · · , ⌈µc⌉(n)) = (⌊µc⌋(n), · · · , ⌊µc⌋(1)).
Write down the standard sl2-triple of SLn:

E =


0 1 · · · 0 0

· · ·
0 0 · · · 1 0

0 0 · · · 0 1

0 0 · · · 0 0

 F =


0 0 · · · 0 0

n− 1 0 · · · 0 0

0 2(n− 2) · · · 0 0

· · ·
0 0 · · · 1− n 0

 H = [E,F ] (20)

Write X = B · (F + stabg(E)), consisting of matrices with 0 entries below the lower subdiagonal.

Under the coordinates (14) and

∗ ∗ · · · ∗ ∗ ∗
y1 ∗ · · · ∗ ∗ ∗
0 y2 · · · ∗ ∗ ∗

· · ·
0 0 · · · yn−2 ∗ ∗
0 0 · · · 0 yn−1 ∗


(21)

we define

Y0 := {(x, y) ∈ n× X|x ∈ n, y ∈ X, xiyi = 0, 1 ≤ i ≤ n− 1}.

Let α be the weight associated to the relative canonical bundle Ωn/g and γn = (0, 0, · · · , 0, 1).
Let iV : V ↪→ T ∗V be the zero section. Endow OY0 , resp. OY0 ⊠ (iV )∗OV with the trivial

B, resp. B-equivariant structure. Let Cλ be the 1-dimensional representation of B associated

to the character λ. Denote the embedding Y0 → g× g by iY0 .

As in Remark 2.9, we make g̃rHL a B-equivariant sheaf by precomposing the original b-action

with τc so that it is integrable.

Lemma 3.1. As a B-equivariant OT ∗g-module, g̃rHL = (iY0)∗OY0 ⊗ C⌈µc⌉+α−mγ0.
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Proof. As a result of the identification:

Γ(g,L) ∼= D(g)/(D(g) · O(b−) +
n−1∑
i=1

D(g)(xi∂xi − ic) +D(g) · S([n, n])

we have that g̃rHL ∼= (iY0)∗OY0 as a OT ∗g-module. Furthermore, the first non-vanishing degree

of grHL equals Ωn/g ⊗ C · ⌈sc0⌉−1.
We conclude the lemma by observing that the B-action on ⌈sc0⌉−1 (see (2) and (17)) is exactly

by the character ⌈µc⌉ −mω0.

We similarly have that

Lemma 3.2. As a B-equivariant OT ∗G-module,

g̃rHL =
(
(iY0)∗OY0 ⊠ (iV )∗OV

)
⊗ C⌈µc⌉+α.

Proof. Comparing Lemmas 3.1 and 3.2, the extra factor of mγn comes from the difference

between sc|U0 (eq. (15)) and sc0 (eq. (16)).

3.2 Functors on equivariant Hodge modules

In this section, we state two important results about Hodge modules that will play crucial

roles in our study on the cuspidal character D-module later.

Let G be an arbitrary affine algebraic group with a closed subgroup H. For any smooth

variety X with a G-action, consider the diagram

G×X

pr

��

π // G/H ×X

pr

��
X X

where pr is the second projection, π : (g, x) 7→ (g, g · x) and pr : (g, x) 7→ x.

For any H-equivariant DX -module F , there is a unique G-equivariant DG/H×X -module E
such that pr†F ∼= π†E . We denote E = IndGHF and Ĩnd

G

H := pr† ◦ IndGH .

Similarly, for any H-equivariant coherent OX -module F , we write indGHF to denote the

associated G-equivariant OG/H×X -module.

Denote the abelian category of G-equivariant Hodge modules on a smooth variety X by

HMG(X) (for a definition, see [Ach, Chapter 5]). We also recall that for any morphism f :

X → Y , there are two associated maps ([HTT08, 2.4]), which form the so-called Lagrangian

correspondence

T ∗X
ρf←− X ×Y T ∗Y

ϖf−−→ T ∗Y.
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Combining the cases when f = π or f = pr, we obtain a commutative diagram

T ∗(G×X) G× T ∗X? _
ρproo ϖpr // //

q

((

T ∗X

T ∗(G/H ×X)×G/H×X (G×X)
� ?

ρπ

OO

ϖπ // // T ∗(G/H ×X) G/H × T ∗X? _soo

(22)

Here q is the natural quotient map but the embedding s does not simply come from the zero

section. Instead, it is the composition map ϖπ ◦ ρ−1π ◦ ρpr ◦ q−1, which is clearly well-defined.

Proposition 3.3. For any M ∈ HMG(G/H ×X), SS(M) ⊂ s(G/H × T ∗X) and the following

diagram commutes, where g̃r is taken with respect to Hodge filtration.

HMH(X)
IndGH
∼

//

g̃r
��

HMG(G/H ×X)

g̃r
��

CohH(T ∗X)
indGH
∼
// CohG(s(G/H × T ∗X))

Proof. That the functor IndGH is an isomorphism in the level of Hodge modules can be found in

[Ach, Theorem 6.2]. It remains to show the essential image of HMG(G/H × G) under g̃r is as

desired and the diagram is commutative.

Suppose M = IndGHL for L ∈ HMH(G). By definition, π†M = pr†L as G-equivariant DG×X -

modules. Taking associated graded of both sides and using [Kas03, Theorem 4.7], we obtain an

isomorphism in CohG(T ∗(G×X))

(ρπ)∗ϖ
∗
πg̃r
•M ∼= (ρpr)∗ϖ

∗
prg̃r

•L. (23)

In particular, we see SS(M) ⊂ ϖπρ
−1
π (G× T ∗X) ⊂ s(G/H × T ∗X).

Given the diagram (22), the identity (23) implies ϖ∗prg̃r
•L = q∗g̃r•M. Therefore indGB g̃r

•L =

g̃r•M and the diagram in the statement commutes.

We will also need the following result on direct images of Hodge modules. Let p : X → Y be

a projective morphism between two smooth varieties. For the functor p† : HM(X)→ DbHM(Y ),

see [Sch, 23]. Let Ω̃X/Y denote the pullback of the relative canonical bundle ΩX/Y to X×Y T ∗Y .

Theorem 3.4. ([Lau83, 2.3.2], [Sch, 28])The diagram below commutes

HMG(X)

g̃r
��

p† // DbHMG(Y )

g̃r
��

CohG(T ∗X)
R(ϖp)∗(Ω̃X/Y ⊗LLρ∗p(−)) // DbCohG(T ∗Y )

where g̃r is taken with respect to the Hodge filtration.
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3.3 Back to the cuspidal setting

We apply the two results in the last section to Nc and Nc.

Since every regular nilpotent x is contained in a unique Borel subalgebra, there are embed-

dings of Nr into B × g and of U into B ×G:

Nr
� � //
q�

""

g U �
� //
q�

ĩ ""

G

B × g

p

OO

B ×G

OO

Define the Springer cuspidal character Dg-module Mc to be the minimal extension of Fc to B×g

and the Springer cuspidal mirabolic DG-module Mc to be the minimal extension of Ec to B×G.

The local system Fc is also clean with respect to the inclusion ĩ, i.e., Mc = ĩ†F . Therefore by

functoriality p†Mc = Nc. Similar to Lemma 2.6, we have that Mc = Mc ⊠OV .

Lemma 3.5. (1) The G-equivariant D-module underlying IndGB(L, FL) is Mc.

(2) The G-equivariant D-module underlying IndGB(L, FL) is Mc.

Proof. We only show (1) and the same argument applies to (2) since L ∼= L⊠OV . Consider the

following cartesian diagram

nr

i0,r

��

G× nr
p0oo π0 //

ir
��

G×B nr Nr

i
��

g G× g
poo π // B × g

Since Ec = IndGBL0, using base change twice, we have

π†i†(Ec) = (ir)†π
†
0(Ec) = (ir)†p

†
0(Fc) = p†(i0,r)†(Fc)

which proves the lemma.

We let Y = G ×B Y0 with an embedding iY : Y → T ∗(B × g) defined by (g, x, y) 7→
(g, [x, y], g · x, g · y). Let Lλ be the G-equivariant line bundle on B associated to the weight

λ. Write L̃λ := (πT ∗(B×g)→B)
∗Lλ. Endow (iY)∗OY, resp. (iY)∗OY ⊠ OV , with the trivial G,

resp. G-equivariant structure. As in Remark 2.9, we make g̃rHMc a G-equivariant sheaf by

precomposing the original g-action with τc so that it is integrable.

Corollary 3.6. As G-equivariant O-modules,

• g̃rHMc
∼= L̃⌈µc⌉+α−mγn ⊗ (iY)∗OY.

• g̃rHMc
∼=

(
L̃⌈µc⌉+α ⊗ (iY)∗OY

)
⊠ (iV )∗OV .

Proof. By Proposition 3.3 and Lemma 3.5, we have g̃rHMc
∼= indGB g̃r

LL and g̃rHMc
∼= indGB g̃r

LL.
It remains to use Lemma 3.1, Lemma 3.2 and the fact that indGBCλ = Lλ.
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4 The cuspidal dg module and bigraded characters

4.1 The cuspidal dg module

Recall the coordinates from (14) and (21). When x ∈ n and y ∈ X, we have [x, y] ∈ b.

Moreover, the diagonals of [x, y] equal

x1y1, x2y2 − x1y1, . . . , −xn−1yn−1.

As a result, xiyi = 0, 1 ≤ i ≤ n− 1 if and only if [x, y] = 0 mod n. That is to say, the following

diagram is Cartesian:

Y
qn //

��

G×B n

��
G×B (n× X)

qb // G×B b

(24)

with qb : G×B (n×X)→ G×B b given by (g, x, y) 7→ (g, [x, y]) and qn is the restriction of qb to

Y.

On B we have the vector bundle b∗ (resp. b) whose total space equals G×B b∗ (resp. G×B b).

Let πb : G×B b→ B be the projection and ιb : B → G×B b be the zero section.

The Koszul complex (∧•π∗bb∗, ∂b), with differential given by contraction with the canonical

section of π∗bb, is quasi-isomorphic to (ιb)∗OB.
One can similarly define πn, ιn, n

∗, etc., such that (∧•π∗nn∗, ∂n) is quasi-isomorphic to (ιn)∗OB.
We define a dg algebra by

A′′ := ((∧•(πn ◦ qn)∗n∗, q∗n∂n)).

By definition, the associated dg scheme Spec(A′′) makes the following diagram Cartesian.

Spec(A′′) //

��

B

ιn
��

Y
qn // G×B n

(25)

Given the Cartesian diagram (24), we have that (iY→G×B(n×X))∗A′′ is quasi-isomorphic to

A := ((∧•q∗bπ∗bb∗, q∗b∂b)).

Because (25) and the diagram on the left of (26) of are Cartesian, diagram on the right of
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(26) is also Cartesian.

G×B T ∗g //

��

B

��

Spec(A′′) //

��

B × T ∗g

��
T ∗(B × g) // G×B n Y // T ∗(B × g)

(26)

Diagrams (24), (25) and (26) can be combined into Figure 4.1.

Spec(A′′) B

Y G×B n

G×B (n× X) G×B b B × T ∗g

T ∗(B × g)

qn

qb

ιn

πT∗g

Figure 4.1: Cartesian diagrams

Next, we consider the following maps

Y
iY //

pY
((

T ∗(B × g)

pT∗(B×g)

��

B × T ∗g
iB×T∗goo

pB×T∗g
uu

T ∗g

where iY is defined by (g, x, y) 7→ (g, [x, y], g · x, g · y).
Let πG×B(n×X)→B and πY→B be projections to B. We define dg modules

Ac := A⊗L (πG×B(n×X)→B)
∗L⌈µc⌉ (27)

and A′′c := A′′ ⊗L (πY→B)
∗L⌈µc⌉. We call Ac the cuspidal dg module of slope c.

We write p : G×B (n× X)→ T ∗g : (g, x, y) 7→ (g · x, g · y) with a restriction pY : Y→ T ∗g.

Let pT ∗(B×g) and pB×T ∗g be projections to T ∗g and iB×T ∗g be the zero section.

We define a G-equivariant structure on g̃rHNc by precomposing the original g-action with

τc so that it is integrable.

Proposition 4.1. There is a G-equivariant isomorphism,

g̃rHNc = Rp∗Ac ⊠ (iV )∗OV .
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Proof. By Theorem 3.4, G-equivariantly we have

g̃rHNc = R(pB×T ∗g)∗Li
∗
B×T ∗g(g̃r

HMc)

By Corollary 3.6, we have g̃rHMc = (L̃⌊µc⌋+α ⊗ (iY)∗OY) ⊠ (iV )∗OV . Therefore there is a

G-equivariant identification

g̃rHNc = R(pB×T ∗g)∗

(
Li∗B×T ∗g

(
L̃⌊µc⌋+α ⊗ (iY)∗OY

)
⊗ π∗T ∗gΩB

)
⊠ (iV )∗OV (28)

Let us cite the following result:

Lemma 4.2. ([Gin12, Lemma 4.4.1]) Let X be a smooth variety and iY : Y → X, iZ : Z → X

be embeddings of closed subvarieties. Then

(iY )∗Li
∗
Y (iZ)∗OZ = (iY )∗OY ⊗L

OX
(iZ)∗OZ = (iZ)∗Li

∗
Z(iY )∗OY .

Applying this lemma to (28) in the setting of Y = B × T ∗g and Z = Y, we obtain

R(pB×T ∗g)∗

(
Li∗B×T ∗g

(
L̃⌊µc⌋+α ⊗ (iY)∗OY

)
⊗ π∗T ∗gΩB

)
=R(pT ∗(B×g))∗

(
L̃⌊µc⌋ ⊗ (iY)∗OY ⊗L (iB×T ∗g)∗OB×T ∗g

)
=R(pT ∗(B×g))∗R(iY)∗L(iY)

∗
(
L̃⌊µc⌋ ⊗ (iB×T ∗g)∗OB×T ∗g

)
=R(pB×T ∗g)∗L(iY)

∗
(
L̃⌊µc⌋ ⊗ (iB×T ∗g)∗OB×T ∗g

)
. (29)

Since the diagram on the right of (26) is Cartesian, we have

L(iY)∗

(
L̃⌊µc⌋ ⊗ (iB×T ∗g)∗OB×T ∗g

)
= R(iY)∗A′′c .

Therefore, (29) equals

R(pB×T ∗g)∗R(iY)∗A′′c = R(pY)∗A′′c = Rp∗Ac.

Therefore, G-equivariantly g̃rHNc = Rp∗Ac ⊠ (iV )∗OV .

4.2 The equivariant K-theory of the Hilbert scheme

Write A := C∗ × C∗. Let KA(Hilbn) denote the equivariant K-theory group, which is a

module over KA(pt) = C[q±, t±].
Define the isospectral Hilbert scheme IHilbn to be the reduced fibered product of the following
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diagram

IHilbn
β //

α

��

C2n

��
Hilbn // C2n/Sn

A deep result of Haiman states that P := α∗OIHilbn is a vector bundle of rank n!, which is known

since as the Procesi bundle.

Moreover, the generalized McKay correspondence of Bridgeland-King-Reid implies an iso-

morphism

β∗α
∗ : KA(Hilbn) ∼= KSn×A(C2n). (30)

The Grothendieck group KSn×A(C2n) is freely generated by Vλ ⊗ C[C2n] over C[q±, t±] where
Vλ is the irreducible representation of Sn associated to λ ⊢ n. Let sλ be the Schur function

associated to λ. Then the bigraded Frobenius character of Vλ ⊗ C[C2n] is

chSn×C∗×C∗(Vλ ⊗ C[C2n]) = sλ(
z

(1− q)(1− t)
).

Therefore, composing (30) with chSn×C∗×C∗ establishes an isomorphism

κ : KA(Hilbn) ∼= {f ∈ C(q, t)[z1, · · · , zn]Sn |f((1− q)(1− t)z) has coefficients in C[q±, t±]}.
(31)

such that κ(Vλ) = sλ(
z

(1−q)(1−t)) where Vλ = HomSn(Vλ,P).
Let λt denote the transpose of the partition λ ⊢ n. The modified Macdonald polynomials

H̃λ(z; q, t) are the unique symmetric polynomials satisfying

H̃λ((1− q)z; q, t) ∈ C(q, t){sµ|µ ≥ λ};

H̃λ((1− t)z; q, t) ∈ C(q, t){sµ|µ ≥ λt};

(H̃λ(z; q, t), s(n)) = 1.

The A-fixed points in Hilbn are in bijection with partitions of n. For any λ ⊢ n, let Iλ be

the associated fixed point and [Iλ] be the K-theory class corresponding to the skyscraper sheaf

supported on Iλ.

Proposition 4.3. ([Hai03, Theorem 4.1.5 and Proposition 5.4.1]) The image of [Iλ] under (31)

is H̃λ.

Throughout, we may not distinguish between partitions and Young diagrams.

For a box x inside a Young diagram σ, let a, ℓ, resp. a′, ℓ′, denote its arm and leg, resp.

coarm and coleg (demonstrated in Figure (4.2)). For a Young tableau, define the weight of the

box x labeled i by χi = qa
′(x)tl

′(x).
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Define

gλ =
∏
x∈σ

(1− qa(x)+1t−ℓ(x))(1− q−a(x)tℓ(x)+1)

which is the bigraded character of the cotangent space at Iλ in Hilbn(C2).

a(□)a′(□)

l(□)

l′(□)

Figure 4.2: ([GN15, Fig.1])Arm, leg, co-arm and co-leg

Let ιλ : {Iλ} ↪→ Hilbn denote the embedding. For any [F ] ∈ KA(Hilbn), under the isomor-

phism (31) we have the localization formula ([CG10, Proposition 5.10.3]):

κ([F ]) =
∑
λ⊢n

H̃λ

gλ
chA(Lι

∗
λF). (32)

4.3 Bigraded character of Lc

4.3.1 Principal nilpotent pairs

In [Gin00], a pair of commuting elements (x1, x2) in g× g is called a principal nilpotent pair

if

• (x1, x2) is regular, i.e., the joint centralizer of x1 and x2 is of minimal dimension.

• For any (t1, t2) ∈ C∗×C∗, there exists some g ∈ G such that (t1x1, t2x2) = (Ad(g)x1,Ad(g)x2).

It is shown in [Gin00, Theorem 1.2] that for every principal nilpotent pair (e1, e2), there

exists an associated semisimple pair h = (h1, h2) such that h is regular and [hi, ej ] = δijej for

i, j = 1, 2.

The adjoint action of (h1, h2) decomposes g into weight spaces g = ⊕a,b∈Z2ga,b such that

ad(h1)x = ax and ad(h2)x = bx for all x ∈ ga,b.

For every fixed principal nilpotent pair e with associated semisimple pair h, let ρ : C∗×C∗ →
G be the 2-parameter subgroup with differential at the identity being C2 → g: (1, 0) 7→ h1,

(0, 1) 7→ h2. We define a C∗ × C∗ action on g by Ad(ρ) and a C∗ × C∗ action g× g by

(t1, t2)(x, y) = (t−11 Ad(ρ(t1, t2))x, t
−1
2 Ad(ρ(t1, t2))y) (33)
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such that e is a fixed point under this action. Note that under these actions, (g ⊕ g)a,b =

ga+1,b ⊕ ga,b+1.

4.3.2 Stalks of the cuspidal dg module

In the case of sln, principal nilpotent pairs up to conjucation are in bijection with partitions

of n. Indeed, for a partition λ, let e1 be the associated Jordan normal form and e2 be the

Jordan normal form associated to the transpose λt. Then it is easy to check that (e1, e2) defines

a principal nilpotent pair and all principal nilpotent pairs can be constructed in this way. For

λ ⊢ n, let eλ denote the corresponding principal nilpotent pair up to conjugacy.

The C∗×C∗-action defined in Section 4.3.1 induces a C∗×C∗-action on (Rp∗Ac)|eλ . Consider
this action versus the bigrading on GS(eLc)|Iλ induced by FH and the Euler field hc ∈ Hc.

Because the Ad(ρ)-action is lost when taking descent, one has that

Lemma 4.4. There is a bigraded isomorphism between vector spaces (Rp∗Ac)|eλ ∼= GS(eLc)|Iλ.

Definition 4.5. We call a Young tableau an almost standard Young tableau (ASYT) if the

labels increase rightwards on rows and upwards on columns, with the exception that the labels

are allowed to decrease up to 1 going up.

For an example, see Appendix A.2.2 for a full list of all ASYT of three boxes. Recall that

if the labels increase rightwards on rows and upwards on columns, we obtain a standard Young

tableau. Let ASYTλ, resp. SYTλ, be the set of almost standard Young tableaux, resp. standard

Young tableaux, of shape λ.

Remark 4.6. Almost standard Young tableaux appear in the discussion of the “eccentric corre-

spondence” in [Neg15b, 4.5] and [GN24, 2.3], which is invented to study the shuffle generators

defined by eq. (43). When specialized, the eccentric correspondence captures the geometry of the

cuspidal dg algebra A at homological degree 0.

Since h is regular, the Borel subalgebras containing both h1 and h2 are in bijection with

the Weyl group. We fix such a bijection w ↔ bw. Write Z := G ×B (n × X) and nw = [bw, bw]

for w ∈ W . We use the subscript r to indicate the regular locus, i.e., when the stablizer of the

G-action is of the minimal possible dimension. Then ZA
r = ⊔w∈WZw,A

r with

Zw,A
r := {bw} × (nw ⊕ Xw) ∩ (g⊕ g)Ar .

Similar to [BG13, Lemma 4.4.1], we have that

Lemma 4.7. For e = (e1, e2) with associated principal semisimple pair (h1, h2), the set of Borel

subalgebras that contains e1, e2, h1, h2 are in bijection with ASYTλ.

We will call such Borel subalgebras almost adapted.

Though [nw,Xw] = bw, we will insist on writing [nw,Xw] to emphasize the A-action on it is

induced by composing (33) with [−,−]. Note that g1,1 = [nw,Xw]
A. We fix an A-stable subspace

Rw ⊂ [nw,Xw] such that [nw,Xw] = Rw ⊕ g1,1.
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For any bigraded vector space V , denote λ(V ) =
∑dim(V )

i=0 (−1)ichA(∧iV ). Following [BG13,

4.3], we adopt the Ω-notation by setting

Ω(
∑
i,j

ai,jq
itj) =

∏
(1− qitj)ai,j (34)

and Ω0(F ) = Ω(F − a0,0). Also, we write

ω(x) =
(1− x)(1− qtx)

(1− qx)(1− tx)

Analogous to [BG13, Theorem 4.5.1], we have

Proposition 4.8. The bigraded character of the stalk (Rp∗Ac)|eλ is

chA((Rp∗Ac)|eλ) =gλ
(1− qt)n−1

(1− t)n−1(−t)n−1
∑

σ∈ASYTe

Ξσ
∏n

i=1 χ
µ⌊c⌋(i)

n−i+1∏̂n−1
i=1 (1−

χi

tχi+1
)

(35)

where

Ξσ :=
∏̂

i

1

(1− χ−1i )

∏̂
1≤i<j≤n

ω(
χi

χj
) (36)

The “restricted” product
∏̂

means we ignore all the zero linear denominators.

Proof. Denote the commuting variety {(x, y) ∈ g × g|[x, y] = 0}red by C. Let Cr denote the

regular locus in C.

By [BG13, Proposition 3.8.6],

chA((Rp∗Ac)|eλ) = λ((T ∗CA
r
Cr)|eλ) ·

∑
bw almost adapted

λ((T ∗
Zw,A
r

Zr)eλ)
−1λ(R∗w)

n∏
i=1

χ
µ⌈c⌉(i)

n−i+1.

One has that λ(Rw) = λ(([nw,Xw]/g1,1)
∗). Moreover, by [BG13, Lemma 3.9.1],

λ((T ∗CA
r
Cr)|eλ) = gλ · λ((g/(Stab(e)⊕ h))∗)

λ((T ∗
Zw,A
r

Zr)eλ) = λ(nw)⊕ λ(
(
(nw ⊕ Xw)/(g⊕ g)A ∩ (nw ⊕ Xw)

)∗
)

Let R, resp. R+, denote the set of all roots, resp. positive roots with respect to bw. Also
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recall that the weight of the box x labeled i is defined by χi = qa
′(x)tl

′(x). We have that

chA(h
∗) =n− 1

chA(g
∗) =n− 1 +

∑
α1,α2∈R

qα1(h1)tα2(h2) = n− 1 +
∑

1≤i ̸=j≤n
χiχ

−1
j

chA(Stab(e)
∗) =

∑
(a,b)∈Y Tλ

q−at−b =
n∑

i=1

χ−1i

chA(nw) =
∑
α∈R+

q−α(h1)t−α(h2) =
∑

1≤i<j≤n
χ−1i χj

chA(n
∗
w ⊕ {0}) =

∑
α∈R+

q1+α1(h1)tα2(h2) = q
∑

1≤i<j≤n
χiχ

−1
j

chA({0} ⊕ X∗w) =
∑
α∈R+

qα(h1)t1+α(h2) + (n− 1)t+
∑

α∈R+, simple

q−α(h1)t1−α(h2)

=(n− 1)t+ t
∑

1≤i<j≤n
χiχ

−1
j + t

n−1∑
i=1

χi+1χ
−1
i

χ([nw,X]) =(n− 1)qt+
∑
α∈R+

q1+α1(h1)t1+α2(h2) = (n− 1)qt+ qt
∑

1≤i<j≤n
χiχ

−1
j

Since λ(V ) = Ω(chA(V )) and λ(V/V A) = Ω0(chA(V )), we further deduce that

λ((g/(Stab(e)⊕ h))∗) ·
(
λ(nw)⊕ λ(

(
(nw ⊕ Xw)/(g⊕ g)A ∩ (nw ⊕ Xw)

)∗
)

)−1

=Ω(
∑

1≤i ̸=j≤n
χiχ

−1
j )Ω((n− 1)qt+ qt

∑
1≤i<j≤n

χiχ
−1
j )

(
Ω(

n∑
i=1

χ−1i )Ω(
∑

1≤i<j≤n
χ−1i χj)Ω

0(q
∑

1≤i<j≤n
χiχ

−1
j )

)−1
(
Ω((n− 1)t)Ω0(t

∑
1≤i<j≤n

χiχ
−1
j )Ω0(t

n−1∑
i=1

χi+1χ
−1
i )

)−1

=
(1− qt

1− t

)n−1
Ω0((1 + qt− q − t)

∑
1≤i<j≤n

χiχ
−1
j )Ω(

n∑
i=1

χ−1i )−1Ω0(t
n−1∑
i=1

χi+1χ
−1
i )−1

=
(1− qt

1− t

)n−1 ∑
σ∈ASYTe

∏̂
1≤i<j≤nω(

χi

χj
)∏̂

i(1− χ−1i )
∏̂n−1

i=1 (1− tχi+1

χi
)

=
(1− qt)n−1

(1− t)n−1(−t)n−1
∑

σ∈ASYTe

χ1/χnΞσ∏̂n−1
i=1 (1−

χi

tχi+1
)
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The proposition now follows from the equality

(⌈µc⌉(1), · · · , ⌈µc⌉(n)) = (⌊µc⌋(1), · · · , ⌊µc⌋(n)) + (1, 0, · · · , 0,−1).

5 The cuspidal and Catalan dg modules and shuffle generators

5.1 The Catalan dg module

Following Section 4.1 closely, we define an analogue of the cuspidal dg module. On B we also

have the vector bundle [n, n]∗ (resp. [n, n]) whose total space equalsG×B [n, n]∗ (resp. G×B [n, n]).

Let π[n,n] : G×B [n, n]→ B be the projection and ι[n,n] : B → G×B [n, n] be the zero section. The

Koszul complex (∧•π∗[n,n][n, n]
∗, ∂[n,n]), with differential given by contraction with the canonical

section of π∗[n,n][n, n], is quasi-isomorphic to (ι[n,n])∗OB. Put q[n,n] : G ×B (n × n) → G ×B [n, n]

by (g, x, y) 7→ (g, [x, y]).

We define

A′c := (πG×B(n×n)→B)
∗L⌊µc⌋ ⊗

(
∧• (π[n,n] ◦ q[n,n])∗([n, n])∗, q∗[n,n]∂[n,n])

)
. (37)

and call it the Catalan dg module at slope c.

Warning: Note that the definitions (27) and (37) use different line bundles.

Write p′ : G ×B (n × n) → g × g : (g, x, y) 7→ (g · x, g · y). The C∗ × C∗-actions in Section

4.3.1 induce a C∗ × C∗-action on (Rp′∗A′c)|e. Similar to Proposition 4.8, we have that

Proposition 5.1. The bigraded character of the stalk R(pG×B(n×n))∗A′c)|e is given by

chA((Rp
′
∗A′c)|eλ) = gλ

∑
σ∈SYTλ

Ξσ
∏n

i=1 χ
µc(n−i+1)
i∏̂n−1

i=1 (1− qt χi

χi+1
)

(38)

where Ξσ is as defined in (36).

Remark 5.2. [BG13, Theorem 4.5.1] states that the q, t-character of the stalk of the rank n!

vector bundle on the commuting variety at eλ is

gλ
(1− q)n(1− t)n

∑
σ∈SYTλ

Ξσ. (39)

As a comparison, the dg algebra in [Gin12] is defined by pulling (∧•π∗nn∗, ∂n) back to G ×B

(b×b) and the Catalan dg algebra is defined by pulling (∧•π∗[n,n][n, n]
∗, ∂[n,n]) back to G×B (n×n).

Compare (39) and (38) when
∏n

i=1 χ
µc(n−i+1)
i = 1. The differences lie in the terms (1 −

q)n(1− t)n and
∏n−1

i=1 (1− qt χi

χi+1
).

The term (1− q)n(1− t)n arises from the distinction between the support being b× b versus

n× n (in gln). The term
∏n−1

i=1 (1− qt χi

χi+1
) results from the complex being defined by n∗ versus

[n, n]∗.
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For a C∗×C∗-module F , we use the notation qatbF to shift the original action by the weight

(a, b). We will prove in the next sections that the descents of Rp′∗A′c and q1−nRp∗Ac correspond

to the same equivariant K-theory classes on Hilbn. We conjecture that

Conjecture 5.3. There exists a GLn × C∗ × C∗-equivariant isomorphism:

Rp′∗A′c ∼= q1−nRp∗Ac.

One should note that a priori it is not clear whether Rp′∗A′c is concentrated in one degree.

In contrast, the sheaf Rp∗Ac is automatically concentrated in one degree as it is the associated

graded of Nc.

5.2 Cuspidal vs Catalan

5.2.1 Shuffle algebras

Define

K = C(q, t)(z1, z2, · · · )S∞ .

We endow K with a C(q, t)-algebra structure via the shuffle product

f(z1, · · · , zk) ∗ g(z1, · · · , zℓ) =
1

k!ℓ!
Sym

[
f(z1, · · · , zk)g(zk+1, · · · , zk+ℓ)

k∏
i=1

k+ℓ∏
j=k+1

ω(
zi
zj
)
]
.

Here Sym denotes symmetrization.

Definition 5.4. The shuffle algebra A is defined as the subspace of K consisting of rational

functions in the form of

F (z1, · · · , zk) =
f(z1, · · · , zk)

∏
1≤i<j≤k(zi − zj)

2∏
1≤i ̸=j≤k(zi − qzj)(zi − tzj)

such that f is a symmetric Laurent series satisfying the wheel conditions:

f(z1, z2, z3, . . . ) = 0 if {z1
z2

,
z2
z3

,
z3
z1
} = {q, t, 1

qt
}.

It is shown in [SV13] that there is an isomorphism between A and the positive half of the

elliptic Hall algebra. Moreover,

Theorem 5.5. ([FT11, SV13]) There exists a geometric action of the algebra A on the vector

space
⊕

n≥0K
A(Hilbn)⊗C[q±,t±] C(q, t).
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5.2.2 Shuffle generators

Following [Neg22], we define1

Pn,m = Sym

(∏n
i=1 z

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1− qt zi
zi+1

)

∏
1≤i<j≤n

ω(
zi
zj
)

)
(40)

According to [BS12], Pn,m with n ≥ 1, m ∈ Z generate the shuffle algebra A.

By [Neg22, (2.34) and (2.35)], (40) equals

Pn,m =

(
(1− qt)

(1− t)(−qt)

)n−1
Sym

(∏n
i=1 z

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1−
zi

tzi+1
)

∏
1≤i<j≤n

ω(
zi
zj
)

)
. (41)

Proposition 5.6. ([Neg15a, Proposition 5.5], [GN15, (49)])Under the action in Theorem 5.5,

Pn,m · 1 =

(
(1− q)(1− t)

(1− qt)

)n∑
λ⊢n

H̃λ

gλ

∑
σ∈SYTλ

∏n
i=1 χ

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1− qt χi

χi+1
)
Θσ (42)

=
(1− t)(1− q)n−1

(1− qt)(−qt)n−1
∑
λ⊢n

H̃λ

gλ

∑
σ∈ASYTλ

∏n
i=1 χ

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1−
χi

tχi+1
)
Θσ (43)

where

Θσ :=
n∏

i=1

(1− qtχi)
∏

1≤i<j≤n
ω−1(

χj

χi
).

Proof. The first identity is exactly [Neg15a, Proposition 5.5] (see also [GN15, (49)]). We show

the second identity closely following the proof of loc. cit.

As in the proof of [Neg15a, Proposition 5.5] (see also [GN15, (42)]), the localization formula

(32) and [Neg15a, Theorem 4.7] imply that Pn,m · 1 equals

γn−1
∑
µ⊢n

[Iµ]

gµ

∫ ∏n
i=1 z

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1−
zi

tzi+1
)

∏
1≤i<j≤n

ω(
zi
zj
)
∏
□∈λ

n∏
i=1

(
ω−1(

zi
χ(□)

)(1− qtzi)
dzi
2πizi

)]
(44)

where γ = (1−qt)
(1−t)(−qt) and the integral is taken along contours separating the poles of the function

to be integraded.

For a partition λ ⊢ n, [Neg15a, (5.4)] (proved in detail in [BG13, Lemma 4.8.5])

∏
□∈λ

(
ω−1(

z

χ(□)
)(1− qtz)

)
=

∏
□ inner corner of µ(1−

qtz
χ(□))∏

□ outer corner of µ(1−
qtz
χ(□))

.

where the notion of inner/outer corners is illustrated below, with hollow circles indicating the

1Note that the Pm,n here and in [Neg22] is denoted by P̃m,n in [GN15], as a certain modification of the Pm,n

in [Neg14].
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inner corners of the partition and the solid circles indicating the outer corners.

t
t

t

d
d

d
d

(4, 0)

(4, 1)(3, 1)

(3, 2)(1, 2)

(1, 3)(0, 3)

[Neg15a, Figure 5.1]

When we integrate over zn, we pick up a residue whenever qtzn equals to the weight of some

outer corner of the partition λ. Label the box adjacent to this corner by n. Then by change of

variables the residue we pick up is the weight of the box labeled by n − 1 and the integral in

(44) becomes

χn

∫ [∏n
i=1 z

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏n−1

i=1 (1−
zi

tzi+1
)

∏̂
1≤i<j≤n

ω(
zi
zj
)
∏̂

□∈λ

∏̂n

i=1

(
ω−1(

zi
χ(□)

)(1− qtzi)
dzi
2πizi

)]
|zn=χn

Next, when we integrate over zn−1, we pick up a residue whenever

• qtzn−1 equals the weight of some outer corner of λ. (zn−1 equals to the weight of some

inner corner of λ)

• q zn−1

χn
= 1 or t zn−1

χn
= 1. (zn−1 equals to the weight of some box to the left or below the

box labeled by n in the last step.)

• zn−1

tχn
= 1. (zn−1 equals to the weight of some box above the box labeled by n in the last

step.)

These three conditions together with the condition for zn exactly define all the possible relative

positions between the box labeled by n and the box labeled by n− 1 in an ASYT such that the

box labeled by n is in a corner. One can argue similarly starting from any label on a corner.

Repeating this procedure, we conclude that the integral in (44) equals

∑
ASYT

n∏
i=1

χi

[∏n
i=1 z

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏̂n−1

i=1 (1−
zi

tzi+1
)

∏̂
1≤i<j≤n

ω(
zi
zj
)
∏̂

□∈λ

∏̂n

i=1

(
ω−1(

zi
χ(□)

)(1− qtzi)
1

zi

)]
|zi=χi

=

(
(1− q)(1− t)

(1− qt)

)n ∑
ASYTλ

[∏n
i=1 χ

⌊ic⌋−⌊(i−1)c⌋
n−i+1∏̂n−1

i=1 (1−
χi

tχi+1
)

∏̂
1≤i<j≤n

ω−1(
χj

χi
)

n∏
i=1

(1− qtχi)

]
.

The factor
( (1−q)(1−t)

(1−qt)
)n

comes from
∏̂n

i=1ω
−1(χi

χi
).
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5.3 Cuspidal and Catalan dg modules vs shuffle generators

Proposition 5.7.

(Pn,m · 1) =
∑
λ⊢n

chq,t((Rp∗A′c)|eλ)
H̃λ

gλ

=q1−n
∑
λ⊢n

chq,t((Rp∗Ac)|eλ)
H̃λ

gλ

Proof. Recall the following expression from formulae (42) and (43) of Pm,n · 1:

Θσ = Ω(qt
n∑

i=1

χi − (1− q)(1− t)
∑

1≤i<j≤n

χj

χi
)

For a Young tableau σ with n boxes and positive integer k ≤ n, we let σ(k) denote the Young

sub-tableau consisting of the first k labels in σ. Then Θσ =
∏n

i=1Θ(σ(j)) with

Θ(σ(j)) := Ω(qtχj − (1− q)(1− t)
∑

1≤i<j

χj

χi
). (45)

Also recall the following expression from formulae (35) and (38) for Ac and A′c:

Ξσ = Ω(−
n∑

i=1

χ−1j + (1− q)(1− t)
∑

1≤i<j≤n

χi

χj
) =

n∏
i=1

Ξ(σ(j))

with

Ξ(σ(j)) := Ω0(−χ−1j + (1− q)(1− t)
∑

1≤i<j

χi

χj
).

In view of Propositions 4.8, 5.1 and 5.6, it suffices to show that for all i = 1, . . . , n,

Θ(σ(i)) = Ξ(σ(i))
gσ(i)

gσ(i−1)

1− qt

(1− q)(1− t)
. (46)

We consider the case i = n; the proof in the general case is similar.

We let Rn (resp. Cn) denote the set of boxes of σ in the same row (resp. same column) as

σ \ σ(n − 1) (excluding σ \ σ(n − 1)). For x ∈ σ we write ak(x), ℓk(x) to indicate the arm and

leg of x in σ(k). Then we have that

gσ(n)

gσ(n−1)
= (1− q)(1− t)

∏
x∈Cn∪Rn

1− q1+an(x)t−ℓn(x)

1− q1+an−1(x)t−ℓn−1(x)
· 1− q−an(x)tℓn(x)+1

1− q−an−1(x)tℓn−1(x)+1
.

Moreover, it is shown in [BG13, 4.10] that

Ξ(σ(n)) =
∏
x∈Cn

1− q1+an−1(x)t−ℓn−1(x)

1− q1+an(x)t−ℓn(x)

∏
x∈Rn

1− q−an−1(x)tℓn−1(x)+1

1− q−an(x)tℓn(x)+1
.
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Therefore the right hand side of (46) equals

(1− qt)
∏
x∈Rn

1− q1+an(x)t−ℓn(x)

1− q1+an−1(x)t−ℓn−1(x)

∏
x∈Cn

1− q−an(x)tℓn(x)+1

1− q−an−1(x)tℓn−1(x)+1

which can be also written as Ω applied to

qt+
∑
x∈Rn

(
q1+an(x)t−ℓn(x) − q1+an−1(x)t−ℓn−1(x)

)
+

∑
x∈Cn

(
q−an(x)tℓn(x)+1 − q−an−1(x)tℓn−1(x)+1

)
(47)

Assume the box labeled by n is at (c, r) and the partition is (λ1, · · · , λℓ(λ)) with λ1 ≥ · · · ≥ λℓ(λ).

By the proof of [BG13, Lemma 4.10.2], we have that (47) equals

qt+

c−1∑
i=1

(qc−i+1 − qc−i)tr+1−λi+1 +

r−1∑
j=0

q−λj+1+c+1(tr−j+1 − tr−j)

=qt+ qc+1tr+1
( c∑
i=1

(q−i+1 − q−i)t−λi +
r∑

j=1

q−λj (t−j+1 − t−j)
)
. (48)

By [BG13, Lemma 4.8.5]

c∑
i=1

(q−i+1−q−i)t−λi +
r∑

j=1

q−λj (t−j+1− t−j) = −(1−q−1)(1− t−1)Bσ\{(c,r)}(q
−1, t−1)+1−qct−r.

Here Bµ =
∑

(α,β)∈µ q
αtβ for any Young diagram µ.

Therefore, (48) equals

−qctr(1− q)(1− t)Bσ(n−1)(q
−1, t−1) + qc+1tr+1,

which is exactly qtχn−(1−q)(1−t)
∑

1≤i<n
χn

χi
. From the expression (45), we obtain the identity

(46) and the proposition follows.

Remark 5.8. A similar formula appears in [KT22, Lemma 5.13].

We will express the formula (42) as Pm,n · 1 =
∑

λ⊢n c
λ
m,nH̃λ, with

cλm,n =

(
(1− q)(1− t)

(1− qt)

)n ∑
σ∈SYTλ

∏n
i=1 χ

⌊ic⌋−⌊(i−1)c⌋
n−i+1

gλ
∏n−1

i=1 (1− qt χi

χi+1
)
Θσ.

According to [GN15, Conjecture 6.1] which is implied by [Mel21, Theorem 5.8],∑
λ⊢n

cλm,n =
∑
D

qµ−area(D)tdinv(D) =
∑
D

qdinv(D)tµ−area(D) (49)

is the q, t-Catalan number. Here µ = (m−1)(n−1)
2 . The sums on the middle and right are taken
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over all m
n -Dyck paths D. The area and dinv are two combinatorial statistics associated to each

dyck path with nonnegative integer values. In particular, when area(D) = 0, dinv(D) = µ and

when dinv(D) = 0, area(D) = µ. Interested readers can refer to [GN15, 6.2] for definitions.

Corollary 5.9. With respect to the natural C∗ × C∗-action on Ac,

• chA×SnΓ(Hilb
n,P ⊗ desc(Rp∗Ac ⊠OV )|H̃ilbn

) = qn−1Pm,n · 1.

• chAΓ(Hilb
n, desc(Rp∗Ac ⊠OV )|H̃ilbn

) = qn−1
∑

λ⊢n c
λ
m,n.

Remark 5.10. Let P̃ be the rank n! vector bundle on C as defined in [Gin12]. Then one

similarly has that

• chA×SnΓ(Cr, P̃ ⊗Rp∗Ac)
G = qn−1Pm,n · 1.

• chAΓ(Cr, Rp∗Ac)
G = qn−1

∑
λ⊢n c

λ
m,n.

Lemma 5.11. Γ(T ∗G, g̃rHNc)
τ−c(g) = Γ(H̃ilbn, g̃rHNc)

τ−c(g).

Proof. Clearly we have the inclusion “⊂”. Thus we only need to count the dimensions. By

Corollary 2.8, the left hand side equals g̃rHeLc, which is known to have dimension (m+n−1)!
m!n! , the

Catalan number. Moreover, by Corollary 5.9 and Proposition 4.1, the dimension of the right

hand side equals to
∑

λ⊢n c
λ
m,n(q = 1, t = 1).

By (49),
∑

λ⊢n c
λ
m,n(q = 1, t = 1) equals the number of m

n -dyck paths, which is known to be
(m+n−1)!

m!n! .

Proposition 5.12. Hodge filtrations are compatible with shift functors, i.e., when c > 1 the

following isomorphism is filtered with respect to the Hodge filtration

eLc
∼= eHcδe− ⊗eHc−1e eLc−1

where the filtration on the right hand side is the tensor product filtration with Hc filtered by

deg y = 1 and deg x = degw = 0.

Proof. Recall the homomorphism ϕk
Nc

from (8). Given the equivalence (b)⇔(c) in Proposition

2.10, it suffices to show that gr(ϕk
Nc

) is an isomorphism for k ≫ 0.

We claim that when k ≫ 0, Γ(T ∗G, g̃rH(D−c(G)det
−k
)) = Γ(H̃ilbn, g̃rH(D−c(G)det

−k
)) =

Γ(Hilb,OHilb(k)).

The first equality is [GGS09, Proposition 7.4]. The second equality follows from the G-

equivariant isomorphism:
(
Og×g ⊠ π∗VOPn−1(k)

)
|
H̃ilbn

∼= O
H̃ilbn

(k). Here πV : V \ {0} → Pn−1 is

the quotient map.

As a result of the claim, Lemma 5.11 and Proposition 4.1, when k ≫ 0 we have that

gr(D−c(G)det
−k

⊗Ac Γ(G,Nc)
τ−c(g)) ∼= Γ

(
Hilbn,OHilbn(k)⊗ desc((Rp∗Ac ⊠ (iV )∗OV )|H̃ilbn

)
)

which is isomorphic to

Γ
(
H̃ilbn,

(
Rp∗(Ac ⊗ (πY→B)

∗L(k,...,k))
)
⊠ (iV )∗OV

) ∼= Γ(H̃ilbn, Rp∗Ac+k ⊠ (iV )∗OV ).
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Using Lemma 5.11 and Proposition 4.1 again, we see that

Γ(H̃ilbn, Rp∗Ac+k ⊠ (iV )∗OV ) ∼= grHΓ(G,Nc)
g−c−k

and the proposition follows.

Corollary 5.12 allows us to extend FH from eLc to Lc for all c =
m
n > 1 by defining a tensor

product filtration on

Lc
∼= Hcδe− ⊗Ac−1 eLc−1. (50)

Theorem 5.13. (i) The bigraded Frobenius character of Lc with respect to the Hodge filtration

and the Euler field hc is

chSn×C∗×C∗grHLc = (Pm,n · 1)(q, q−1t).

(ii) In CohC
∗×C∗

(Hilbn), we have that

GS(eLc) ∼= q1−ndesc
((
Rp∗Ac ⊠ (iV )∗OV

)
|
H̃ilbn

)
.

Proof. Because of Proposition 5.12 and Proposition 2.10, we have GS(eLc) = Ψc(Nc).

By [GS05, Theorem 4.5], GS(eHc) = P. This plus (50) implies that as C∗ × C∗-modules,

grHLc = Γ(Hilbn,P ⊗Ψ(Nc)).

By Proposition 4.1,

P ⊗Ψ(Nc) = qatb
(
P ⊗ desc((Rp∗Ac ⊠ (iV )∗OV )|H̃ilbn

)
)

whose space of global sections has bigraded Frobenius character qa+n−1tbPm,n · 1 according to

Corollary 5.9, for some integers a, b.

As a consequence, chA(gr
HeLc) = qa+n−1tb

∑
λ⊢n c

λ
m,n(q, q

−1t). The change of variable

(q, q−1t) comes from the fact that the Euler field hc acts by weight (1,−1).
It remains to show qa+n−1tb = 1. However, the highest, resp. lowest weight of eLc under the

action of hc is µ, resp. −µ. Given (49) we see that qa+n−1tb = 1 and the theorem follows.

5.4 Link homology and filtrations

We can now conclude Theorem 1.2 from the introduction.

In
⊕

n≥0K
A(Hilbn)⊗C[q±,t±] C(a, q, t), define Λ(Vst, a) =

⊕n−1
i=0 ai(∧iVst).

Theorem 5.14. ([Mel22, Corollary 3.4]) Up to a constant factor, the triply graded Euler char-

acteristic cha,q,t(HHH(Tm,n)) equals the matrix coefficient ⟨Λ(Vst, a)|Pm,n|1⟩.

As a corollary of Theorem 5.14 and Theorem 5.13, we have

Corollary 5.15. For m > n and (m,n) = 1, there is a triply graded isomorphism when m > n:

HHH(Tm,n) ∼= HomSn

(
∧• h, grH•

(
⊕ Lc(•)

))
. (51)
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Since the left hand side of (51) is m,n-symmetric, we see that

Corollary 5.16. Hodge filtrations on eLm
n
and eL n

m
are compatible with the isomorphism eLm

n

∼=
eL n

m
.

Consider a partial order on the positive rational numbers in the following way: for coprime

pairs (m,n), m
n ≺

m+n
n ; if n < m, then m

n ≺
n
m .

On can always go from c = m
n to 1

n′ for some integer n′ > 1 through a chain of rational

numbers decreasing under the order (Q>0,≺).

Definition 5.17. [GORS14, Theorem 4.1] We define a filtration F ind inductively as follows:

0 = F ind
−1 eL 1

n
⊂ F ind

0 eL 1
n
= eL 1

n
= L 1

n
.

Next, F ind is defined inductively under the order (Q>0,≺) using the isomorphisms:

when m,n > 1, eLm
n

∼= eL n
m

([CEE09, 8.2])

when c > 1, Lc
∼= Hce− ⊗eHc−1e eLc−1 ([GS05, Theorem 1.6])

Combining Proposition 5.12 and Corollary 5.16, we obtain that

Proposition 5.18. FH
j Lc = F ind

j Lc when c > 1 and FH
j eLc = F ind

j eLc when c > 0.

On Hc we have the Fourier transform defined by

Φc(xi) = yi, Φc(yi) = −xi, Φc(w) = w (52)

which defines the Dunkl bilinear form

(−,−)c : C[h]× C[h]→ C, (f, g)c = [Φc(f)g]|xi=0.

When c = m
n > 0, with m,n coprime, (−,−)c has a nonzero kernel Ic and the resulting quotient

C[h]/Ic is exactly isomorphic to Lc ([DO03, Proposition 2.34]). Inside C[h], take the ideal

a := (C[h]W+ ). Let βc be a highest weight vector in Lc and let ⊥c denote orthogonal complement

with respect to (−,−)c.

Definition 5.19. The algebraic filtration2 is defined by

F a
i (Lc) = Φc[(a

i+1)⊥c ]βc.

Proposition 5.20. For m > 0 and (m,n) = 1, there is a triply graded isomorphism:

HHH(Tm,n) ∼= HomSn

(
∧• h, gra•(⊕Lc(•))

)
. (53)

2In [Ma24] (and [GORS14]) the filtration F a is called the power filtration, while the algebraic filtration is its
associated Kazhdan filtration.
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Proof. It is shown in [Ma24] that F ind = F a. This plus Proposition 5.18 and Corollary 5.15

implies that Proposition 5.20 holds when m > n. Denote the right hand side of (53) by Hm,n, it

remains to show a triply graded isomorphism Hm,n
∼= Hn,m.

By [Gor13, Corollary 1.1], for all k ≥ 0 there is an isomorphism

HomSn(∧kCn−1,Lm
n
) ∼= HomSm(∧kCm−1,L n

m
). (54)

via identifications with spaces of differential forms on a zero-dimensional moduli space associated

with the plane curve singularity xm = yn. By [GORS14, Proposition 1.5], (54) is a bigraded

isomorphism with respect to the algebraic filtration and the Euler field hc. This finishes the

proof of the proposition.

6 Fourier transforms of cuspidal character D-modules

In this section, we prove an auxilary result about the Fourier transform of the cuspidal

character D-module. Although unrealted to the main results of the paper, this may be of

independent interest.

6.1 The cuspidal character D-module is stable under the Fourier transform

The map g × g∗ → g∗ × g sending (x, x∗) 7→ (x∗,−x) induces an isomorphism σ1 : D(g) ∼=
D(g∗).

Further identitifying σ2 : D(g∗) ∼= D(g) via a non-degenerate bilinear form g ∼= g∗, we have

obtain the Fourier transform induced by σ := σ2 ◦ σ1:

F : Dg−mod→ Dg−mod.

Proposition 6.1. As Dg-modules, FNc
∼= Nc.

Proof. Put ι : T ∗g→ T ∗g, (x, x∗) 7→ (x∗,−x). Then

SS(F(Nc)) = ι(SS(Nc)) ⊂ N ×N .

By [Lus87], F(Nc) is again a cupidal character D-module and is determined by the monodromy

of its restriction to Nr. Therefore the proposition follows from the following claim:

Claim: There is an isomorphism ι†(F(Nc)) ∼= Fc where ι : Nr ↪→ g.

Recall that the cuspidal character D-module Nc can be expressed as Ĩnd
G

BL. Therefore

F(Nc) = Ĩnd
G

BF(L).
Since

Γ(g,L) = D(g)/(D(g) ·O(b−) +
∑
i

D(g)(xi∂xi − ic) +D(g) · S([n, n])) (55)
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we see that

Γ(g,F(L)) = D(g)/(D(g) · S(b) +
∑
i

D(g)(∂yiyi + ic) +D(g) ·O([n−, n−])). (56)

Consider the standard sl2-triple E,F,H (defined by (20)). Then (55) and (56) tells us that L
is the minimal extension of a local system supported on B ·E and F(L) is the minimal extension

of a local system supported on B · F defined by a multi-valued function

y−c1 y−2c2 . . . y
−(n−1)c
n−1 . (57)

Moreover, L|T ·E is a local system on T · E such that

Fc = Ĩnd
G

T i
E
† (i

E)†ι†L

with iE : T · E → Nr. Similarly, F(Nc)|T ·F is a local system on T · F such that

(F(Nc))|Nr = Ĩnd
G

T i
F
† (i

F )†ι†F(L)

with iF : T · F → Nr.

It suffices to show that (iF )†Fc = (iF )†ι†F(L). Recall that the pullback of Fc along the

fibration q : U → Nr is Ec and Ec is defined by the multi-valued function sc (eq. (3)).

sc|T ·F = vnc1 y
(n−1)c
1 y

(n−2)c
2 · · · ycn−1.

Therefore, (iF )†Fc is defined by the multi-valued function

y
(n−1)c
1 y

(n−2)c
2 · · · ycn−1.

Finally, the lemma follows from the observation that the functions y
(n−1)c
1 y

(n−2)c
2 · · · ycn−1 and

y−c−11 y−2c−12 . . . y
−(n−1)c−1
n−1 (eq. (57)) define the same local system on T · F as

((n− 1)c, (n− 2)c, · · · , c)− (m,m, · · · ,m) = (−c,−2c, · · · ,−(n− 1)c).

6.2 An explicit description of the Fourier transform

Let x = (xij) be the standard coordinates of gln and (∂) = (∂xij )1≤i,j≤n. Take

e :=
1

2
tr(x2), f := −1

2
tr(∂2), h =

∑
1≤i,j≤n

xij∂xij + (n2 − 1)/2. (58)

Clearly, [e, f ] = h, [h, e] = 2e and [h, f ] = −2f . Notice that [e,−], [f,−], [h,−] all preserve the

homogeneous components of D(g) (with deg(xij)=deg(∂xij )=1). In other words, this sl2-action

on D(g) is locally finite and thus integrable. Moreover, e− f acts on D(g) via

[e− f, xij ] = [−f, xij ] = ∂xij , [e− f, ∂xij ] = [e, ∂xij ] = −xij . (59)
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Hence its exponential Ad e
iπ
2
(e−f) gives exactly the Fourier transform σ.

On the other hand, any D(g)-module inherits such an sl2-action. By [CEE09, example 63],

the action of {e, f, h} on Nc is locally finite and thus also integrable. Denote the action of

e
iπ
2
(e−f) on Nc by Φ. Then (59) implies that

Φ(xija) = ∂xijΦ(a), Φ(∂xija) = −xijΦ(a), ∀a ∈ Nc, 1 ≤ i, j ≤ n.

Therefore, Φ gives an explicit isomorphism between Nc and F(Nc).
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A Examples

We compile some computations of
∑
λ⊢n

chq,t((Rp∗Ac)|eλ)
gλ

and
∑
λ⊢n

chq,t((Rp
′
∗A′c)|eλ)

gλ
. In view

of [KT22], setting q → 1 these statistics are also Shalika germs in the corresponding cases.

A.1 n = 2

A.1.1 Catalan A′
k+ 1

2

1 2︷ ︸︸ ︷
qk

1− t
q

+

2

1︷ ︸︸ ︷
tk

1− q
t

=
k∑

i=0

qitk−i

A.1.2 Cuspdial Ak+ 1
2

1 2︷ ︸︸ ︷
qk+1

1− t
q

+

2

1︷ ︸︸ ︷
tk+1(1− q)(1− qt)

(1− t)(1− t2)(1− q
t )

+

1

2︷ ︸︸ ︷
tk(1− qt2)

(1− t2)(1− 1
t )

=q(

k∑
i=0

qitk−i)
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A.2 n = 3

A.2.1 Catalan A′2
3

2

1 3︷ ︸︸ ︷
q(

1− t
q

)(
1− q2

t

) +

3

1 2︷ ︸︸ ︷
t(

1− q
t

) (
1− t2

q

) +

1 2 3︷ ︸︸ ︷
q

(1− t
q )

(
1− t

q2

) +

3

2

1︷ ︸︸ ︷
t

(1− q
t )
(
1− q

t2

)
= q + t

A.2.2 Cuspidal A 2
3

1 2 3︷ ︸︸ ︷
q3

(1− t
q )

(
1− t

q2

)

+

3

1 2︷ ︸︸ ︷
q
(
1− q2

)
t(1− qt)

(1− t)
(
1− q2

t

)(
1− t

q

)(
1− t2

q

) +

1

2 3︷ ︸︸ ︷
qt(1− qt)2

(1− t)2
(
1− q

t

) (
1− t2

q

) +

2

1 3︷ ︸︸ ︷
q
(
1− qt2

)(
1− 1

t

)
(1− t)

(
1− t2

q

)

+

3

2

1︷ ︸︸ ︷
(1− q)2t3(1− qt)2

(1− t)2 (1− t2)2
(
1− q

t2

) (
1− q

t

) +

3

1

2︷ ︸︸ ︷
(1− q)t3(1− qt)

(
1− qt2

)(
1− 1

t

)
(1− t) (1− t2) (1− t3)

(
1− q

t2

)

+

2

3

1︷ ︸︸ ︷
(1− q)t2(1− qt)

(
1− qt2

)(
1− 1

t

)
(1− t) (1− t2) (1− t3)

(
1− q

t2

) +

1

2

3︷ ︸︸ ︷
t
(
1− qt2

) (
1− qt3

)(
1− 1

t2

) (
1− 1

t

)
(1− t2) (1− t3)

=q2(q + t)
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A.3 n = 4

A.3.1 Catalan A′3
4

3

1 2 4︷ ︸︸ ︷
qt(1− t)(

1− q2

t

)(
1− t

q

)2 (
1− t2

q2

) +

2

1 3 4︷ ︸︸ ︷
qt(

1− q
t

) (
1− t

q

)(
1− t2

q2

)

+

3 4

1 2︷ ︸︸ ︷
(1− q)qt(

1− q
t

) (
1− q2

t

)(
1− t

q

)2 +

4

1 2 3︷ ︸︸ ︷
q3(

1− t
q3

)(
1− t

q2

)(
1− t

q

) +

1 2 3 4︷ ︸︸ ︷
q3(

1− q3

t

)(
1− t

q2

)(
1− t

q

)

+

4

2

1 3︷ ︸︸ ︷
qt(1− t)(

1− q2

t2

) (
1− q

t

)2 (
1− t2

q

) +

4

3

1 2︷ ︸︸ ︷
qt(

1− q2

t2

) (
1− q

t

) (
1− t

q

)

+

2 4

1 3︷ ︸︸ ︷
qt(1− t)(

1− q
t

)2 (
1− t

q

)(
1− t2

q

) +

3

2

1 4︷ ︸︸ ︷
t3(

1− q
t2

) (
1− q

t

) (
1− q

t3

) +

4

3

2

1︷ ︸︸ ︷
t3(

1− q
t3

) (
1− q

t2

) (
1− q

t

)
=q3 + q2t+ qt+ qt2 + t3
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