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Abstract

In [GORS14], the HOMFLY polynomial of the (m,n) torus knot Tm,n is extracted from the doubly
graded character of the finite-dimensional representation Lm

n
of the type An−1 rational Cherednik algebra.

It is furthermore conjectured in loc. cit. that one can obtain the triply-graded Khovanov-Rozansky
homology of Tm,n by considering a certain filtration on Lm

n
. In this paper, we show that two of the

proposed candidates, the algebraic filtration and the inductive filtration, are equal.
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1 Introduction
1.1 The rational Cherednik algebra and link homology

The HOMFLY polynomial is a link invariant defined by the skein relation in the form of a two-variable
polynomial, generalizing the one-variable Alexander polynomial and the Jones polynomial. In the early
2000s, these link polynomials were realized as Euler characteristics of various link homology theories. This
process was inspired by the ideas of “categorification”, for a survey, see [Kho06]. Remarkably, the HOMFLY
polynomial was categorified by the Khovanov–Rozansky (KhR) link homology using matrix factorization
[KR08]. Soon after, the construction of the KhR homology was modified using Hochschild homology of
Soergel bimodules (hence the notation HHH), which revealed the connection between link invariants and
Kazhdan-Lusztig theory [Kho07]. The past twenty years have seen a large variety of incarnations of KhR
homology, to name a few: the (co)homology of braid/positroid/Richardson varieties, affine/global Springer
theory, coherent sheaves on the Hilbert scheme of points and representation theory of double affine Hecke
algebras (for a survey, see [GKS23]).

This paper will focus on the representation theoretic model of the KhR homology. Let m,n be a coprime
positive integer pair and let h denote the (n − 1)-dimensional standard representation of the symmetric
group Sn. The rational Cherednik algebra Hm

n
(also called rational DAHA) is a deformation of D(h) ⋉ Sn

at the parameter m
n where D(h) is the ring of differential operators on h. The algebra Hm

n
has a unique

finite-dimensional irreducible representation which we denote by Lm
n

. Under the action of the Euler field, Lm
n

decomposes into a direct sum of eigenspaces, allowing us to define the associated q-graded Euler characterstic
chq(Lm

n
) =

∑
i dim(Lm

n
(i))qi. In [GORS14], the authors recover the HOMFLY polynomials of the (m,n)

torus knot Tm,n from the graded character of (the hook Sn-isotypic components of) Lm
n

by comparing explicit
computational results of both sides:

Theorem 1.1. [GORS14, Theorem 1.1]

HOMFLYa,q(Tm,n) = a(n−1)(m−1)
n−1∑
i=0

a2ichq
(
HomSn

(∧i(h),Lc)
)
. (1)

As mentioned above, the HOMFLY polynomial is the doubly graded Euler characteristic of the KhR
homology. In fact, the KhR homology is a triply graded knot invariant whose full characteristic is the so-
called “link superpolynomial”. As seen in Theorem 1.1, the internal q-grading of HHH corresponds to the
weight space decomposition of Lc; the Hochschild homological a-grading corresponds to the (hook-)isotypic
components of Lm

n
. The main conjecture of [GORS14] is that the third usual homological t-grading on the

KhR homology should be given by a filtration on Lm
n

:

Conjecture 1.2. [GORS14, Conjecture 1.2] There exists a filtration on Lc whose associated t-grading in
(1) yields the refined identity

cha,q,t(HHH(Tm,n)) = a(n−1)(m−1)
n−1∑
i=0

a2ichq,t
(
HomSn

(∧i(h),Lc)
)
.

In loc. cit., three potential candidates for this t-grading are proposed and conjectured to coincide:

• The inductive filtration F ind is defined inductively using the shift functor from Hm
n

-modules to Hm
n +1-

modules and the “flipping” isomorphism LSn
m
n

∼= LSm
n
m

.

• The algebraic filtration F alg is defined by reshuffling weight spaces under the Euler field and orthogonal
complements of powers of the ideal a generated by non-constant symmetric polynomials under the
Dunkl form.

• The geometric filtration F geom is defined as the perverse filtration on the cohomology of a Hitchin fiber
isomorphic to the compactified Jacobian of the planar singular curve ym = xn.
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1.2 The inductive filtration and the Hilbert scheme of points in C2

The inductive filtration F ind originated from the concept of a “good filtration” in [GS05], where the
authors establish Sn-equivariant bigraded isomorphisms

(Lk+ 1
n
)Sn ∼= Γ(Hilbn0 (C2),O(k)) (2)

Lk+ 1
n

∼= sign⊗ Γ(Hilbn0 (C2),P ⊗O(k − 1)) (3)

confirming conjectures in [BEG03b]. Here Hilbn0 (C2) is the punctual Hilbert scheme of n points on C2 and
O(k), resp. P denotes the degree-k tautological line bundle, resp. Procesi bundle of rank n! on Hilbn0 (C2).
The gradings on the right hand side of (2) and (3) are induced by the action of (C∗)2 on C2 by scaling. In
this setting, only the shift functor is needed to define the inductive filtration on Lk+ 1

n
. As proved in [Hai98],

the q, t-character of the right hand side of (2) equals to the q, t-Catalan number:

chq,t((Lk+ 1
n
)Sn) = chq,t(Γ(Hilbn0 (C2),O(k))) = Cnk+1,n(q, t). (4)

On the other hand, as a consequence of the rational Shuffle conjecture proved in [Mel21], one also has

cha=0,q,t(HHH(Tnk+1,n)) = Cnk+1,n(q, t).

These two equalities provide evidence of Conjecture 1.2 using the inductive filtration.

1.3 Algebraic and geometric filtrations and the compactified Jacobian
Let Cm

n
denote the closure of the plane curve ym = xn in P2 and Jm

n
be the compactified Jacobian of Cm

n
,

which parametrizes rank one torsion-free coherent sheaves on Cm
n

of a fixed degree. On the C∗-equivariant
cohomology of Jm

n
one can define the perverse filtration P (see [OY16, 8.5.1]). Let H∗

ϵ=1(Jm
n
) denote the

specialization of H∗
C∗(Jm

n
) at 1. It is proved in loc. cit. using the global Springer theory and proved in

[GK23] using the BFN Springer theory that there are natural actions of the spherical Cherednik algebra
eHm

n
e on the associated graded grPH∗

ϵ=1(Jm
n
) so that grPH∗

ϵ=1(Jm
n
) ∼= (Lm

n
)Sn as eHm

n
e-representations.

On the other hand, consider the arc space Mm
n

, defined as the moduli space of maps φ : P1 → Cm
n

of
degree 1 such that φ(∞) = ∞C and deg(φ∗(f) − f) ≤ k − 2 for all f ∈ C[tm, tn] of degree k. Here φ∗ is
the induced homomorphism C[Cm

n
−∞C ] → C[P1 −∞]. Then according to [FGvS99, section G], C[Mm

n
] is

isomorphic to (Lm
n
)Sn as rings and is filtered by powers of its maximal ideal m = aSn .

Conjecture 1.3. [OY17, Conjecture 1.1.7] For all i, j ∈ Z, grPj H2i(Jm
n
) = grj−i

m C[Mm
n
](j).

In the case of m = nk + 1 for k ≥ 0, the main result of [GM13] implies that∑
i,j

dim(grPj H
2i(Jk+ 1

n
))qjt2i = Cnk+1,n(q, qt

2). (5)

Comparison between (5) and (4) provides a numerical correlation between (H∗(Jk+ 1
n
), P ) and ((Lk+ 1

n
)Sn , F ind).

In this paper, we relate F ind and F alg.

Conjecture 1.4. [GORS14, Conjecture 4.12] On Lm
n

when m > n for coprime m,n the algebraic filtration
coincides with the inductive filtration.

Theorem 1.5. (Theorem 3.16) Conjecture 1.4 holds.

Because of its definition (see Section 3.2) one can only define F ind on Lm
n

when m > n. But F ind is
defined on (Lm

n
)Sn for all positive integer m coprime to n, in which cases it follows from Theorem 1.5 that

F ind coincides with F alg.
As suggested by the discussion above (and explained in [OY17, Proposition 6.2.3]), we obtain the following

as a corollary.

Theorem 1.6. When m = nk + 1 for k ≥ 0, Conjecture 1.3 is true.
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The method we use to prove Theorem 1.5 is induction on the powers of a. It is proved in [DO03]
that Lm

n
can be defined as the maximal quotient of C[h] such that the Dunkl form is nondegenerate. The

main theme of this paper is to show that the obstruction of doing induction exactly lies in the kernel of
the Dunkl form Im

n
. We prove this statement by inspecting Im

n
using the residue description provided in

[Dun98, CE03, Gor13]. By decomposing elements in Lc into sums of products of symmetric polynomials
and “m

n -harmonic polynomials” (Section 2.2), we transform the question into a linear algebra problem on
dimension counts of subspaces in the direct sums of copies of coinvariant algebras (Section 4.1, 4.2). The
solution to this linear algebra problem is derived from the appearance of certain distributive lattices (Section
4.3). In the case of m = 2n− 1, the cohomology of the Springer fiber at a minimal nilpotent element comes
into the picture (Section 4.3.1). The proof is highly combinatorial and it would be interesting to geometrize
it.

Acknowledgement: The author would like to thank Victor Ginzburg, Eugene Gorsky, Thomas Hameister,
Yixuan Li, Linus Setiabrata and Minh-Tam Trinh for interesting discussions and helpful feedback on the
draft.

2 Representations of the rational Cherednik algebra
2.1 Definitions
Definition 2.1. We define the rational Cherednik algebra Hc associated to the Cartan h ⊂ gln, Weyl group
W = Sn and parameter c ∈ C to be the C-algebra generated by h, h∗ and W with relations

[x, x′] = [y, y′] = 0, wxw−1 = w(x), wyw−1 = w(y)

[y, x] = x(y)−
∑
s∈S

c〈αs, x〉〈α∨
s , y〉s

where x, x′ ∈ h, y, y′ ∈ h
∗, w ∈W , S ⊂W is the set of simple reflections and αs, resp. α∨

s , is the root, resp.
coroot, associated to s.

Let h ⊂ h be a Cartan of sln. The rational Cherednik algebra Hc associated to h with parameter c can
be defined similarly.

Let hreg = h \ ∪s∈S{αs = 0} be the regular part of h and D(hreg) be the ring of differential operators on
hreg. We take x1, · · · , xn to be the standard basis of h∗. Define the Dunkl operators

y
(c)
i :=

∂

∂xi
− c

∑
s∈S

〈αs, xi〉
αs

(1− s).

(Below we may drop the superscript (c) when there is no ambiguity.) Hc can be realized as a subalgebra of
D(hreg)⋉W generated by xi, yi for 1 ≤ i ≤ n and W .

Similarly, Hc is generated by x1, · · · , xn mod (x1 + · · ·+ xn), y1 − y2, · · · , yn−1 − yn and W .
Take the polynomial representation of Hc given by C[h] ∼= Hc ⊗S(h)⋉W C. When c = m

n > 0, with m,n
coprime, this representation has a finite-dimensional irreducible quotient, usually denoted by Lc.

Theorem 2.2. ([BEG03b, Theorem 1.2]) When c = m
n for positive integer m coprime to n, the only

irreducible finite-dimensional representation of Hc is Lc. Moreover, only when c = m
n for integer m coprime

to n does Hc have finite-dimensional representations.

On Hc we have the Fourier transform defined by

Φc(xi) = yi, Φc(yi) = −xi, Φc(w) = w (6)

which defines the Dunkl bilinear form

(−,−)c : C[h]× C[h] → C, (f, g)c = [Φc(f)g]|xi=0.
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From the definition, we see that for any φ, ψ ∈ C[h],

((xi − xj)φ, ψ)c = (φ, (yi − yj)ψ)c. (7)

On the other hand, since wxiw−1 = xw(i) and wyiw
−1 = yw(i)for any w ∈ Sn, we also have

(w(φ), w(ψ))c = (φ, ψ)c. (8)

For generic c including 0, (−,−)c is non-degenerate. However, when c = m
n > 0, with m,n coprime, (−,−)c

has a nonzero kernel Ic and the resulting quotient C[h]/Ic is exactly isomorphic to Lc ([DO03, Proposition
2.34]).

Example 2.3. When c = k
2 , let s = (12). Then y1 − y2 = ∂

∂xi
− 2c 1−s

x1−x2
and (y1 − y2)

(
(x1 − x2)

ℓ
)
=

2`c(x1 − x2)
ℓ−1. As a result I k

2
= ((x1 − x2)

k) and dimL k
2
= k.

Under the W -action, Lc decomposes into isotypic components

Lc =
⊕

σ∈IrrepW
eσLc,

where eσLc = σ ⊗ HomW (σ,Lc). In particular, for e = 1
n!

∑
w∈W w and e− = 1

n!

∑
w∈W (−1)sign(w)w,

eLc = etrivLc while e−Lc = esignLc. For any two subspaces U , V of C[h] or Lc, we write U ⊥c V when U
and V are orthogonal with respect to (−,−)c.

Lemma 2.4. eσLc ⊥c eσ′Lc if σ 6= σ′.

Proof. It is a consequence of the property (8) which says that (−,−)c is W -invariant.

2.2 c-Harmonic polynomials
From now on we will assume c satisfies the assumption in Theorem 2.2. Inside C[h], take the ideal

a := (C[h]W+ ). Let δ :=
∏

i<j(xi−xj) denote the Vandermonde determinant. Define the space of c-Harmonic
polynomials to be Hc := C[y1 − y2, . . . , yn−1 − yn]δ.

Lemma 2.5. For non-negative b2, · · · , bn, if
∑n

i=2 bi =
n(n−1)

2 and {b2, · · · , bn} 6= {1, 2, · · · , n − 1}, then
yb22 y

b3
3 · · · ybnn δ = 0

Proof. For any σ ∈W ,

yb22 y
b3
3 · · · ybnn δ = σ(yb22 y

b3
3 · · · ybnn δ) = yb2σ(2)y

b3
σ(3) · · · y

bn
σ(n)((−1)sign(σ)δ)

because for degree reasons yb22 y
b3
3 · · · ybnn δ is a constant. From this we deduce∑

σ∈W

(−1)sign(σ)σ(yb22 y
b3
3 · · · ybnn )δ = n!yb22 y

b3
3 · · · ybnn δ. (9)

On the other hand, the polynomial
∑

σ(−1)sign(σ)σ(xb22 x
b3
3 · · ·xbnn ) is skew-symmetric of degree the same

as δ and hence has to equal to λδ for some constant λ because of

C[h]sign = δC[h]. (10)

However, δ explands into ∑
σ∈W

(−1)sign(σ)xσ(2)x
2
σ(3) · · ·x

n−1
σ(n) (11)

since {b2, · · · , bn} 6= {1, 2, · · · , n−1}, by comparing the degrees of terms in δ and
∑

σ(−1)sign(σ)σ(xb22 x
b3
3 · · ·xbnn ),

we conclude that λ = 0 and the lemma follows.
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Similar to the classical result C[h] = a⊕⊥0 H0 ([CG10, 6.3]), there is the following analogue:

Proposition 2.6. When c = m
n > 1 with (m,n) = 1, we have that C[h] = a⊕Hc with a⊥cHc.

Proof. Since the image of δ under the action of any symmetric polynomial in yi’s is still scew-symmetric,
because of (10) the image has to be 0 and so Hc ⊥c a. On the other hand, since C[h]/a ∼= C[W ], it is
sufficient to prove that dimHc = n!.

We first claim that y2y23 · · · yn−1
n δ 6= 0.

When c > 1 the image of δ is nonzero along the projection C[h] → Lc as ([BEG03b, 4.3])

δeLc = e−Lc
∼= eLc−1 6= 0.

This implies that there is a polynomial φ such that (δ, φ)c 6= 0. But by Lemma 2.4, we may assume
φ ∈ e−Lc = δeLc. For degree reasons, we must have that φ is a nonzero multiple of δ. As a result, we have
(δ, δ)c 6= 0, which by (11) expands to

(
∑
σ∈W

(−1)sign(σ)yσ(2)y
2
σ(3) · · · y

n−1
σ(n))δ. (12)

By (9), (12) equals to n!y2y23 · · · yn−1
n δ 6= 0 and the claim follows.

It remains to show that the elements ya2
2 ya3

3 . . . yan
n δ, satisfying 0 ≤ ai ≤ i − 1, which are nonzero from

the discussion above, are linearly independent.
Suppose otherwise, i.e. ∑

∑
ai=N

αa2,...,an
ya2
2 ya3

3 . . . yan
n δ = 0,

where 0 ≤ ai ≤ i−1 andN ∈ Z≥0. Let (A2, . . . , An) be the maximal element inside the set {(a1, . . . , an−1)|
∑
ai =

N, 0 ≤ ai ≤ i− 1} under the lexicographical order1

Then
y1−A2
2 y2−A3

3 · · · yn−1−An
n

∑
∑

ai=N

αa2,...,an
ya2
2 ya3

3 . . . yan
n δ = 0.

As a consequence of Lemma 2.5

0 = y1−A2
2 y2−A3

3 · · · yn−1−An
n

∑
∑

ai=N

αa2,...,any
a2
2 ya3

3 . . . yan
n δ = αa2,...,any2y

2
3 · · · yn−1

n δ,

which was proved to be nonzero above. This yields a contradiction. Therefore, the elements ya2
2 ya3

3 . . . yan
n δ

satisfying 0 ≤ ai ≤ i− 1 are linearly independent and the lemma holds.

In view of the proof, we actually have that Proposition 2.6 holds whenever δ /∈ Ic.

Lemma 2.7. The polynomials φa2,...,an
:= xa2

2 x
a3
3 . . . xan

n , satisfying 0 ≤ ai ≤ i − 1 form a basis of C[h]/a.
Moreover, any φ ∈ C[h] can be uniquely expressed as φ =

∑
hiψi with hi ∈ Hc and ψi ∈ C[h]W . In other

words, C[h] = Hc · C[h]W .

Proof. It follows from Lemma 2.6 and the fact that C[h] is the Galois extension of C[h]W with respect to the
polynomial

∏n
i=1(x− xi) with basis given by φa2,··· ,an , 0 ≤ ai ≤ i− 1.

Corollary 2.8. Ic ∩Hc = {0} when c > 1.

Proof. As in the proof of Lemma 2.6, (y1−a2
2 y2−a3

3 . . . yn−1−an
n )(ya2

2 ya3
3 . . . yan

n )δ is a nonzero constant. More-
over, if φ ∈ Ic, then (yi − yi+1)φ ∈ Ic for any 1 ≤ i ≤ n− 1 because of (7). Since nonzero constants are not
contained in Ic, we conclude that ya2

2 ya3
3 . . . yan

n δ /∈ Ic for all 0 ≤ ai ≤ i− 1 and the corollary follows.
1i.e. for (a1, . . . , an−1) and (a′1, . . . , a

′
n−1), if for some 1 ≤ i ≤ n − 1, a1 = a′1, · · · , ai = a′i and ai+1 > a′i+1 then

(a1, . . . , an−1) > (a′1, . . . , a
′
n−1).
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To avoid extra notations, below we will simply use a and Hc to denote their images under C[h] → Lc

when there is no ambiguity. That is to say, we have a direct sum decomposition Lc = a⊕Hc and Hc = a⊥c ,
where ⊥c denotes orthogonal complement with respect to (−,−)c.

There is a W -action on Hc by permuting the yi’s. Under this action, Hc is isomorphic to the regular
representation of W . Decompose Hc =

⊕
σ Hσ

c so that Hσ
c = σ ⊗HomW (σ,Hc).

Corollary 2.9. eσLc = Hσ
c · eLc.

Proof. Clearly Hσ
c · eLc ⊂ eσLc. Moreover, it follows from Lemma 2.7 that Lc = Hc · eLc = (

⊕
σ Hσ

c ) · eLc =⊕
σ Hσ

c · eLc and hence the opposite inclusion follows.

3 The power filtration and the inductive filtration
3.1 The algebraic filtration and the power filtration
3.1.1 The power filtration

Let pi :=
∑n

j=1 x
i
j be the power sum symmetric polynomial of degree i. Then C[h]W = C[p1, p2, . . . , pn]/(p1).

The following three elements in Hc form an sl2-triple

e =
1

2
p2 −

1

2n
p21 =

1

2n

∑
i<j

(xi − xj)
2, f = −Φc(e) = − 1

2n

∑
i<j

(yi − yj)
2,

h =
1

2

∑
(xiyi + yixi)−

1

2n
(p1Φc(p1) + Φc(p1)p1) =

1

2n

∑
i<j

(
(xi − xj)(yi − yj) + (yi − yj)(xi − xj)

)
[h, e] = 2e, [h, f ] = −2f , [e, f ] = h

Lemma 3.1. On Lc, h acts by 1
n

∑
i<j(xi − xj)(yi − yj)− µ where µ = (m−1)(n−1)

2 .

Remark 3.2. µ is the Milnor number of the singular curve {xm = yn}.

Proof. We compute that

h =
1

2n

∑
i<j

(
(xi − xj)(yi − yj)− (xi − xj)(yi − yj)

)

=
1

2n

∑
i<j

(
2(xi − xj)(yi − yj) + 2|S| −

∑
i<j

∑
s∈S

c〈αs, xi − xj〉〈yi − yj , α
∨
s 〉s
)

=
1

2n

∑
i<j

(
2(xi − xj)(yi − yj) +

(
2|S| − c

((
n

2

)
+

(
n− 2

2

)
− 3

)∑
s∈S

s

))
.

Here S is the set consisting of all reflections with |S| =
(
n
2

)
and

(
n
2

)
−
(
n−2
2

)
= 2n − 3 is the number of αs

such that 〈αs, xi − xj〉 6= 0. Moreover, 〈αs, xi − xj〉 equals to 2 when αs = xi − xj and equals to ±1 when
s = (ik) or (jk) for some k 6= i, j. Therefore

h =
1

2n

∑
i<j

(
2(xi − xj)(yi − yj) + (2|S| − 2nc

∑
s∈S

s)

)
.

Since
∑

s∈S s is in the center of the group algebra of W , it acts by a scalar on Lc, which is |S|. So finally

h =
1

n

∑
i<j

(
(xi − xj)(yi − yj) + (1− nc)|S|

)
=

1

n

∑
i<j

(
(yi − yj)(xi − xj)− (1− nc)|S|

)
.

We conclude the lemma by
1

n
(nc− 1)|S| = (m− 1)(n− 1)

2
= µ.
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The left action of h gives a decomposition of Lc into weight spaces
⊕

k Lc(k) where Lc(k) = {v ∈ Lc|hv =
kv}. As a corollary of Lemma 3.1, h · 1 = −µ. Therefore 1 is a eigenvector vector of minimal lowest weight
−µ and eµ is a eigenvector of maximal highest weight µ.

Note that [e − f , x] = [−f , x] = y, and [e − f , y] = −x. Also, because the action of 〈ad(e), ad(f), ad(h〉)
on Hc is locally finite and integrable, [BEG03a, Remark after 3.8] tells us that the Fourier transform (6) can
also be expressed by

Φc = Ad(e
iπ
2 (e−f)) : Hc → Hc. (13)

This allows us to define

Φc : Lc → Lc, φ 7→ e
iπ
2 (e−f)φ (14)

where e
iπ
2 (e−f) acts by left action. The lemma below gives a concrete characterization of Φc.

Lemma 3.3. Suppose 0 6= φ ∈ Lc(k). If k < 0, then Φc(φ) is a nonzero multiple of e−kφ; if k > 0, then
Φc(φ) is a nonzero multiple of fkφ. In particular, we have that Φc(1) is a nonzero multiple of eµ.

Proof. Since Φc(e) = −f and Φc(f) = −e, we know that Φc preserves 〈e, f ,h〉-subrepresentations of Lc. On
the other hand, because Φc(h) = −h, for any φ ∈ Lc we have hΦc(φ) = −Φch(φ). As a result Φc(Lc(k)) =
Lc(−k). Finally, notice that when φ ∈ Lc(k) with k < 0, it follows that 0 6= e−kφ ∈ Lc(−k) ∩ 〈e, f ,h〉φ,
which is one-dimensional. Hence e−kφ = CΦc(φ) for some nonzero constant C. The argument is similar for
the case when k > 0.

The algebraic filtration F alg′ in [GORS14, Definition 4.6] is defined by

F alg′

i (Lc) = (
∑

2j−k>i

(aj)(k))⊥c .

Below we use the Fourier transform to reconstruct F alg′ .

Definition 3.4. For all c > 0, using (14) the power filtration on Lc is defined by

F a
i (Lc) = Φc[(a

i+1)⊥c ] = Φc[(a
i+1)⊥c ]eµ.

We let C[h]Wj be the sub vector space spanned by pi1pi2 · · · pij for 2 ≤ i1, · · · , ij ≤ n and C[h]W≤j =⊕j
ℓ=0 C[h]Wℓ .

Lemma 3.5. φ ∈ (ai)⊥c ⊂ Lc if and only if for all ψ ∈ C[h]Wi , Φc(ψ)φ = 0.

Proof. “⇐” is clear. To show “⇒”, assume φ ∈ (ai)⊥c but Φc(ψ)φ 6= 0 for some ψ ∈ C[h]Wi . Then since
(−,−)c is non-degenerate on Lc, there exists some ξ ∈ Lc so that (ξ,Φc(ψ)φ)c = (ξψ, φ)c 6= 0 is a nonzero
constant. This contradicts the assumption that φ ∈ (ai)⊥c as ξψ ∈ ai.

Lemma 3.6. For φ ∈ [(ai+1)⊥c ]W , (yi − yi+1)φ ∈ (ai)⊥c for all i.

Proof. Take ψ ∈ C[h]Wi . Then Φc(ψ)φ is symmetric and also lies in a⊥c = Hc. Therefore Φc(ψ)φ is a
constant and Φc(ψ)(yi − yi+1)φ = 0. Now apply the last lemma.

3.1.2 The Kazhdan filtration

Definition 3.7. [Gin18, 3.2] The Kazhdan filtration KF on a vector space V associated to an ascending
Z-filtration F and a Z-grading V = ⊕k∈ZV (k) is

KF
i (V ) =

∑
2j+k≤i

Fj(V )(k).

8



Definition 3.8. Define the algebraic filtration F alg on Lc to be the Kazhdan filtration associated to F a and
the h-grading, i.e.

F alg
i =

∑
2j+k≤i

Φc((a
j+1)⊥c)(k).

Lemma 3.9. F alg = F alg′ .

Proof. For fixed i and k we have

F alg
i (k) =

∑
2j+k≤i

Φc((a
j+1)⊥c)(k) = Φc((a

⌈ i−k+1
2 ⌉)⊥c)(k),

F alg′

i (k) = (
∑

k<2j−i

(aj)(k))⊥c = (a⌈
i+k+1

2 ⌉)⊥c(k).

Take P ∈ Φc[(a
⌈ i−k+1

2 ⌉)⊥c ] a polynomial in y1 − y2, . . . , yn−1 − yn of degree µ− k. Take φ ∈ a⌈
i+k+1

2 ⌉ of
degree µ+ k so that φ ∈ Lc(k). Then

(φ, Peµ)c = (Φc(P ),Φc(φ)e
µ)c.

As a result F alg
i (k) = F alg′

i (k) if and only if Φc(a
⌈ i+k+1

2 ⌉)(−k) = a⌈
i−k+1

2 ⌉(−k). After change of variables,
this latter condition is equivalent to Φc(a

u)(v) = au+v(v).
Now by Lemma 3.3, Φc(a

u)(v) = Φc(a
u(−v)), which equals to ev(au(−v)) = (evau)(v) when v > 0 and

equals to f−v(au(−v)) = (f−vau)(v) when v < 0. Since (evau)(v) and f−v(au(−v)) = (f−vau)(v) both lie in
au+v(v), we conclude

Φc(a
u)(v) ⊂ au+v(k),

from which we also have
Φc(a

u+v(v)) = (Φc(a
u+v))(−v) ⊂ au(−v).

Now applying Φc gives us au+v(v) ⊂ Φc(a
u(−v)) = Φc(a

u)(v). Therefore Φc(a
u)(v) = au+v(v) and F alg =

F alg′ .

3.2 The inductive filtration
We have the following isomorphisms

when m,n > 1, eLm
n

∼= eL n
m

([CEE09, 8.2]) (15)
when c > 1, Lc

∼= Hce− ⊗eHc−1e eLc−1 ([GS05, Theorem 1.6]) (16)

To view Hce− as a right eHc−1e-module, one uses the identification e−Hce− ∼= δeHc−1eδ
−1 ([BEG03b,

Proposition 4.1]). The isomorphism (16) implies an embedding eLc−1 ↪→ eLc: em 7→ e− ⊗ em and an
isomorphism

e−Lc
∼= δeLc−1 (17)

when c > 1. Using (15) and (16), we can define two inductive filtrations on Lc when c > 1 and on eLc when
c > 0, denoted by F ind and F ind′ respectively.

First we give a partial order on the positive rational numbers in the following way: for coprime pairs
(m,n)

m

n
≺ m+ n

n
; if n < m, then m

n
≺ m

n
. (18)

We can then use the Euclidean algorithm to go from c = m
n to 1

n′ for some integer n′ > 1 through
a chain of rational numbers decreasing under the order (Q>0,≺). For example, if c = 13

5 , then we have
13
5 � 3

5 � 5
3 � 2

3 � 3
2 � 1

2 .
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Definition 3.10. [GORS14, Theorem 4.1] For the base case when m = 1, F ind and F ind′ are defined trivially
on Lc:

0 = F ⋆
−1eL 1

n
⊂ F ⋆

0 eL 1
n
= eL 1

n
= L 1

n
.

where ? = ind or ind′. Next F ind and F ind′ are defined inductively under the order (Q>0,≺) using the
isomorphisms (15) and (16).

• When the filtration on the right hand side of (16) is the tensor product filtration where Hc is endowed
with the order filtration F ord such that deg y = 1 and deg x = degw = 0 we get F ind.

• When the filtration on the right hand side of (16) is the tensor product filtration where Hc is endowed
with the Bernstein filtration FBern such that deg y = deg x = 1 and degw = 0 we obtain F ind′ .

Lemma 3.11. F ind′ is the Kazhdan filtration associated to F ind and the h-grading.

Proof. It is sufficient to show that the Bernstein filtration FBern on D(hreg) (containing Hc) defined by
deg(xi) = deg(∂xi

) = 1 is the Kazhdan filtration associated to the the h-grading and the order filtration
F ord defined by deg(xi) = 0 and deg(∂xi

) = 1.
By definition, F ord

i (D(hreg)) =
∑

|α|≤i Ohreg
∂αx with |α| =

∑
i αi whose associated Kazhdan filtration is

Kord
i (D(hreg)) =

∑
2j+k≤i

∑
|α|≤j

Ohreg
∂αx (k).

Now note that the h-grading of xi is 1 while that of ∂xi
is −1. Therefore

Kord
i (D(hreg)) =

∑
2j+|β|−|α|≤i

∑
|α|≤j

ξα,βx
β∂αx =

∑
|β|+|α|≤i

ξα,βx
β∂αx .

where ξα,β ∈ C. This is exactly FBern and the lemma is proved.

Corollary 3.12. The equality F alg = F ind′ is equivalent to the equality F a = F ind.

Lemma 3.13. (1) f · F a
i Lc ⊂ F a

i+1Lc, for c > 0

(2) f · F ind
i eLc ⊂ F ind

i+1eLc for c > 0 and f · F ind
i Lc ⊂ F ind

i+1Lc for c > 1.

(3) e · F a
i Lc ⊂ F a

i−1Lc, for c > 0

(4) e · F ind
i eLc ⊂ F ind

i−1eLc for c > 0 and e · F ind
i Lc ⊂ F ind

i−1Lc for c > 1.

(5) Assume v is a highest weight vector with respect to the sl2 triple {e, f ,h} and v ∈ F ind
j Lc \F ind

j−1Lc. Then
for i ≥ 0 such that f iv 6= 0, we have f iv ∈ F ind

j+iLc \ F ind
j+i−1Lc. The same holds for F a in place F ind.

Proof. We will only prove (1) and (2). (3) and (4) can be shown by an analogous argument. (5) follows from
(1)-(4).

By definition, (1) is to say f · Φc((a
i+1)⊥c) ⊂ Φc((a

i+2)⊥c), or equivalently e · (ai+1)⊥c ⊂ (ai+2)⊥c . By
Lemma 3.5 and equation (7): ((xi − xj)φ, ψ)c = (φ, (yi − yj)ψ)c, it suffices to show f · C[h]Wi+2 ⊂ C[h]W≥i+1.

Recall that f = − 1
2n

∑
i<j(yi − yj)

2. We write ∇̃f = ( ∂f
∂xi

− ∂f
∂xj

)i<j and use [Gor13, Corollary 5.3] to
compute that for 2 ≤ j1, · · · ji+2 ≤ n

−2nf · (pj1 · · · pji+2) = (−2nf · pj1) pj2 · · · pji+2 + · · ·+ pj1pj2 · · ·
(
−2nf · pji+2

)
+ (∇̃pj1 · ∇̃pj2) · · · pji+2

+ pj1 · · · (∇̃pji · ∇̃pji+2
)

which does lie in C[h]W≥i+1.
Next, we prove (2) by induction. Trivially, part (2) of the lemma holds for eL1/n for all n > 1. Now for

c = m/n where m > 1 we assume the statement holds for all (m′, n′) ≺ (m,n). For eLc we may assume
c > 1 otherwise we take eL1/c given axiom (1) for F ind. Thus we only need to prove the statement for Lc.
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Take
∑
ξk ⊗ ηk ∈ Hcδe− ⊗e−Hce− eLc−1 so that ξk ∈ FαHcδe− and ηk ∈ F ind

β eLc−1 and α+ β ≤ i. Apply
Φc(p2) and we obtain ∑

Φc(p2)ξi ⊗ ηi =
∑

[Φc(p2), ξi]⊗ ηi + ξi ⊗ Φc(p2)ηi.

Here [Φc(p2), ξi] ∈ Fα+1 and Φc(p2)ηi ∈ F ind
α+1 by the inductive hypothesis. Hence (2) of the lemma follows.

Corollary 3.14. (1) e(F alg
i Lc) ⊂ F alg

i Lc and e(F ind′

i Lc) ⊂ F ind′

i Lc.

(2) f(F alg
i Lc) ⊂ F alg

i Lc and f(F ind′

i Lc) ⊂ F ind′

i Lc.

(3) Φc(F
alg
i Lc) = F alg

i Lc and Φc(F
ind′

i Lc) = F ind′

i Lc.

(4) Assume v is a highest weight vector under the sl2 triple {e, f ,h} and v ∈ F ind′

j Lc \ F ind′

j−1Lc. Then for
i ≥ 0 such that f iv 6= 0, f iv ∈ F ind′

j Lc \ F ind′

j−1Lc. The same holds for F alg in place F ind′ .

Proof. Notice that e · Lc(k) ⊂ Lc(k + 2) while f · Lc ⊂ Lc(k − 2). Hence (1) and (2) of the corollary follow
from Lemma 3.13 and the fact that F alg is the Kazhdan filtrations associated to F a and F ind′ is the Kazhdan
filtrations associated to F ind. (3) follows from (1) and (2) plus Lemma 3.3. (4) follows from (1),(2) and
(3).

3.3 Some first relations between F a and F ind

It is discussed in [GORS14, Theorem 4.8] that F alg is compatible with (15) and (17). It is not hard to
see that F a is also compatible with (15) and (17): According to [CEE09, 8.2] the isomorphism eLm

n

∼= eL n
m

can be defined by (up to scalars)
pi(x1, . . . , xn) 7→ pi(x1, . . . , xm),

which is clearly a filtered homomorphism under F a. Also, the following lemma shows that F a is compatible
with (17):

Lemma 3.15. δ
(
(ai)⊥c

)W ⊂ (ai)⊥ and Φc(δ)
(
(ai)⊥

)sign ⊂ (ai)⊥.

Proof. We will only show that δ
(
(ai)⊥

)W ⊂ (ai)⊥. The proof of the other statement is similar. Assume there
exists φ ∈ C[h]Wi and ψ ∈

(
(ai)⊥

)W such that Φc(φ)(δψ) 6= 0. Then since Φc(φ)(δψ) ∈ C[h]sign = δC[h]W ,
which intersects Hc = a⊥ only at {0}, there exists some symmetric polynomial η (possibly constant) satisfying
Φc(η)Φc(φ)(δψ) = δ. From the proof of Lemma 2.6, we see that Φc(δ)δ 6= 0. As a result, Φc(δηφ)(δψ) is a
nonzero constant. As a result,

0 6= (Φc(δ)(δψ), ηφ)c = (δψ, δηφ)c = (δ, δ)c(ψ, δη)c−1 (19)

where the second identity is proved in [DdJO94, Corollary 4.5]. This contradicts the assumption that
ψ ∈ (ai)⊥c . Therefore Φc(φ)(δψ) 6= 0 and the first statement follows from Lemma 3.5.

Our ultimate goal is to show

Theorem 3.16. When c > 1, for all i ≥ 0, F ind
i Lc = F a

i Lc.

The containment in one direction is immediate:

Lemma 3.17. When c > 1, F ind
i Lc ⊂ F a

i Lc

Proof. We do induction on c with respect to the same order as in the proof of Lemma 3.13. Assume
F ind
i Lc′ ⊂ F a

i Lc′ holds for all c′ ≺ c under the order (18). Take
∑

k ξk ⊗ ηk ∈ Hcδe− ⊗e−Hce− eLc−1 so that
ξk ∈ F ord

α Hcδe− and ηk ∈ F ind
β eLc−1 and α+ β ≤ i. We shall show (ξk ⊗ ηk) ⊥c Φc(a

i+1).
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By Lemma 3.5, it is sufficient to show that pji+1 · · · pj1(ξk ⊗ ηk) = 0 for 2 ≤ j1, · · · ji+1 ≤ n. For this, we
compute that

pji+1 · · · pj1(ξk ⊗ ηk)

=pji+1 · · · pj2 [pj1 , ξk]⊗ ηk + pji+1 · · · pj2ξk ⊗ pj1ηk = · · ·
=[pji+1 , [· · · , [pjα+1 , [pjα , [pjα−1 , [· · · [pj1 , ξk] · · · ]⊗ ηk

+ [pji+1
, [· · · , [pjα+1

, [pjα , [pjα−1
, [· · · [pj2 , ξk] · · · ]⊗ pj1ηk + · · ·

+ ξk ⊗ pji+1
· · · pj1ηk.

Notice that [pji+1
[· · · [pjα+1

, [pjα , [pjα−1
, [· · · [pjℓ+1

, ξk] · · · ] ∈ Fα−i+ℓ−1 when α − i + ` − 1 ≥ 0 and equals to
0 otherwise.

On the other hand, by the induction hypothesis, ηk ⊥ Φc(a
β+1)σc−1. As a result, pjℓ · · · pj1ηk ∈

F a
β−ℓeLc−1 when ` ≤ β and equals to 0 otherwise.

Since α + β ≤ i, we see that either [pji+1 [· · · [pjα+1 , [pjα , [pjα−1 , [· · · [pjℓ+1
, ξk] · · · ] = 0 or pjℓ · · · pj1ηk = 0

and the lemma follows.

This gives a different proof of [GORS14, Theorem 4.8]. To show the opposite containment, our idea is
to do induction on i. For the base case:

Lemma 3.18. When c > 1, F ind
0 Lc = F a

0 Lc.

Proof. It suffices to show F ind
0 Lc ⊃ F a

0 Lc. Under the isomorphism (16),

F a
0 Lc

Lemma 2.6
= Φc(a

⊥c) = Φc(Hc) = Φc(C[y1 − y2, · · · , yn−1 − yn]δ)e
µ = C[x1, · · · , xn]Φc(δ)e

µ

is mapped to

Im
(
C[x1, · · · , xn]e− ⊗ eµ−

n(n−1)
2 Hce− ⊗eHc−1e eLc−1

)
⊂ Im

(
F ord
0 (Hce−)⊗ F ind

0 eLc−1 → Hce− ⊗eHc−1e eLc−1

)
= F ind

0 Lc.

This recovers [GORS14, Corollary 4.11] from a different point of view.

Example 3.19. (See Figure 1) Consider L 4
3

whose dimension is 43−1 = 16. We compute F a, F ind, F alg on
L 4

3
. In this case, Hc = Htriv

c ⊕ (Hst
c )

⊕2 ⊕Hsign
c . Inside, (Hst

c )
⊕2 = 〈ξ1, ξ2〉 ⊕ 〈α1, α2〉 where ξi = xi − xi+1

and αi = (yi − yi+1)δ. By Lemma 3.18, we have F ind
0 Lc = F a

0 Lc = 〈Φc(1),Φc(ξi),Φc(αi),Φc(δ)〉. Since
Φc(1),Φc(ξi),Φc(αi),Φc(δ) are all highest weight vectors under the sl2 triple {e, f ,h}, Lemma 3.13 tells us
that f i(v) ∈ F ind

i Lc ∩ F a
i Lc for any v ∈ F a

0 Lc.
It remains to determine where p3 belongs to. Since p3 ∈ (a2)⊥c and is not c-harmonic, Φc(p3) ∈ F a

1 Lc.
On the other hand, by Lemma 3.1, p3 = 1

9

∑2
i=1(xi − xi+1)(yi − yi+1)p3. Because (yi − yi+1)p3 ∈ Hc, we

conclude that Φc(p3) =
1
9

∑2
i=1(yi − yi+1)Φc((yi − yi+1)p3) ∈ F ind

1 Lc.

3.3.1 Orthogonal lifts and the orthogonal complement of IWc−1

The product Hc ·C[h]W≤i denotes the vector space generated by all hψ with h ∈ Hc and ψ ∈ C[h]W≤i. Since
Hc · C[h]W≤i

∼= C[h]/ai+1, there is a unique hψ ∈ Lc so that hψ ∈ (ai+1)⊥c and hψ ≡ hψ modulo ai+1. We
will use this notation frequently from now on. In the sequel, all polynomials will be homogeneous.

Write (aj)⊥c
j−1 := (aj)⊥c ∩ aj−1. Then when j 6= j′

(aj+1)⊥c
j ⊥c (a

j′+1)⊥c

j′ .

Inside (aj+1)⊥c
j , consider the subspace

Sj := 〈hψ ∈ (aj+1)⊥c
j |h ∈ Hc, ψ ∈ IWc−1〉. (20)
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Figure 1: Filtrations from example 3.19 where the numbers at the bottom indicate h-weights

We can go through the Gram-Schmidt process to obtain an orthogonal basis under the nondegenerate form
(−,−)c−1 on

(
(Ic−1)

⊥c ∩ (aj+1)⊥c
j

)W (mod Ic), which we denote by {ψ̂}. Also, we take an orthogonal basis
{ĥ} of Hc such that ĥ = P̂ δ with P̂ ∈ C[y1 − y2, . . . , yn−1 − yn] depending on ĥ.

Define Sj,⊥c = 〈hψ ∈ (aj+1)⊥c
j |h ∈ Hc, ψ ∈ (I⊥c

c−1)
W 〉.

Lemma 3.20. For any integer j ≥ 0, suppose F ind
j eLc−1 = F a

j eLc−1. Then Φc(Sj,⊥c
) ⊂ F ind

j Lc.

Proof. For orthogonal basis elements ψ̂ of
(
(Ic−1)

⊥c ∩ (aj+1)⊥c
j

)W and ĥ = P̂ δ of Hc chosen as above, we
claim the following

(a) P̂ (δψ̂) ∈ (aj+1)⊥c .

(b) Φc(P̂ (δψ̂)) ∈ F ind
j Lc.

(c) For any pair (ĥ′, ψ̂′), (P̂ (δψ̂), ĥ′ψ̂′)c 6= 0 if and only if ĥ′ = ĥ and ψ̂′ = ψ̂.

Here (a) holds because δψ̂ ∈ (aj+1)⊥c by Lemma 3.15 and so does P̂ (δψ̂).
For (b), by Lemma 3.3, Φc(δψ̂) = Φc(δψ̂)βc for some nonzero highest weight vector βc in Lc, which

is mapped to Φc−1(ψ̂)βc−1 for some nonzero highest weight vector βc−1 in Lc−1 under the isomorphism
e−Lc

∼= δeLc−1. The element Φc−1(ψ̂)βc−1 lies in F a
j eLc−1 and hence belongs to F ind

j Lc−1 by the assumption
of the lemma. Therefore so does Φc(P̂ (δψ̂)) = Φc(P̂ )Φc(δψ̂).

To show (c), notice that Φc(δψ̂′)(δψ̂) = (δ, δ)c(ψ̂′, ψ̂)c−1 6= 0 if and only if ψ̂ = ψ̂′. Therefore Φc(ψ̂′)(δψ̂) 6=
0 if and only if ψ̂ = ψ̂′, in which case

(P̂ (δψ̂), ĥ′ψ̂′)c = (P̂Φc(ψ̂)(δψ̂), ĥ′)c = (ψ̂, ψ̂)c−1(P̂ (δ), ĥ′)c = (ψ̂, ψ̂)c−1(ĥ, ĥ′)c 6= 0 iff ĥ = ĥ′.

As a consequence, {Φc(P̂ (δψ̂))} forms a new basis of Φc(Sj,⊥c
) that is contained in F ind

j Lc. Hence the
lemma follows.

Lemma 3.21. Sj,⊥c
= (Sj)

⊥c ∩ (aj+1)⊥c
j .

Proof. By Lemma 2.7, Sj,⊥c and Sj together span (aj+1)⊥c
j . Therefore we only need to show Sj,⊥c ⊂

(Sj)
⊥c ∩ (aj+1)⊥c

j . To do so, by the proof of Lemma 3.20, it suffices to show that (P̂ (δψ̂), hφ)c = 0 for all
hφ ∈ (aj+1)⊥c

j such that h ∈ Hc and φ ∈ IWc−1.
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Because of Lemma 2.4, we have that (P̂ (δψ̂), hφ)c = (δψ̂,Φc(P̂ )hφ)c is nonzero if and only if there exists
some φ◦ ∈ C[h]W so that

(δψ̂, δφ◦)c = (δψ̂,Φc(P̂ )hφ)c.

By Lemma 2.4, δφ◦ ∈ Isignc−1 . Moreover, note that Isignc−1 = δIWc−1 and hence φ◦ ∈ Ic−1. We conclude the lemma
by

(δψ̂,Φc(P̂ )hφ)c = (δ, δ)c(ψ̂, φ
◦)c−1 = 0.

3.3.2 Criteria for induction

Lemma 3.20 tells us that we can show F ind = F a on Sj,⊥c
by induction on c. As for Sj , with doing

induction on indexes of the filtrations in question, we prove Proposition 3.23.
Lemma 3.22. (i) The quotient map ∪jSj,⊥c

→ Lc/(I
W
c−1) is an isomorphism.

(ii) Im(F ord
0 (Hce−)⊗C eLc−1 → Hce− ⊗eHc−1e eLc−1

∼= Lc) = Lc/(I
W
c−1).

Proof. (i) follows directly from the definition of Sj,⊥c
. To see (ii), note that

(
Lc/(I

W
c−1)

)W
= eLc/I

W
c−1 =

eLc−1 and so by Lemma 2.7,
Lc/(I

W
c−1) = Hc ·

(
Lc/(I

W
c−1)

)W
.

Moreover, F ord
0 (Hce−) ∼= C[x1, · · · , xn]. It remains to notice that

C[x1, · · · , xn] · eLc−1 = (C[x1, · · · , xn]/a) · eLc−1 = Hc · LW
c /IWc−1.

Proposition 3.23. For j ≥ 1, suppose F ind
j−1Lc = F a

j−1Lc. Then the following statements are equivalent

(i) For any nonzero ψ ∈ Sj and k ∈ [1, n− 1] such that (yk − yk+1)ψ /∈ (aj)⊥c , Φc(ψ) = 0.

(ii) For any nonzero φ ∈ Sj such that (yk − yk+1)φ ∈ aj for all k ∈ [1, n− 1], Φc(φ) = 0.

(iii) Φc(Sj ∩
(∑n

k=1 xk(a
j)⊥c

)⊥c
) = 0.

(iv) F ind
j Sj = F a

j Sj.
Proof. (i) ⇒ (ii) is obvious.

(ii) ⇔ (iii): The property (7) ((xi − xj)φ, ψ)c = (φ, (yi − yj)ψ)c implies that φ ∈
(∑n

k=1 xk(a
j)⊥c

)⊥c is
equivalent to (yk − yk+1)φ ⊥c (a

j)⊥c .
(iii) ⇒ (i): First of all, note that Φc(

∑n
k=1 xk(a

j)⊥c) is a subspace of Φc((a
j+1)⊥c). Let

pr : Φc((a
j+1)⊥c) → Φc(

n∑
k=1

xk(a
j)⊥c)

denote the orthogonal projection. Then because of (7), (i) is equivalent to the condition that ψ 6= pr(ψ).
Take φ = ψ − pr(ψ). Then φ lies in ((

∑n
k=1 xk(a

j)⊥c)⊥c) ∩ (aj+1)⊥c , which equals to 0 by assumption (ii).
(iv) ⇒ (iii): Take φ ∈ Sj such that Φc(φ) ∈ F a

j Lc = F ind
j Lc with j > 0. By the definition of F ind, Φc(φ) =∑

α+β=j φα ⊗ φβ where φα ∈ F ord
α Hce− and φβ ∈ F ind

β eLc−1. Since the image of φ in Lc/(I
W
c−1) is 0, given

Lemma 3.22, we may assume α > 0. As a result, Φc(φ) can be written in the form of
∑

k(yk − yk+1)Φc(φk)
for some Φc(φk) ∈ F ind

j−1 which equals to F a
j−1 by our assumption. Therefore Φc(φ) ∈ Φc(

∑n
k=1 xk(a

j)⊥c).
(i) ⇒ (iv): When Φc(ψ) is a lowest weight vector, which lies F a

µ , we have already shown ψ ∈ F ind
µ by

Lemma 3.13. Hence below we assume Φc(ψ) is of weight ν > −µ.
Then from hψ = νψ and Lemma 3.1 we deduce∑

i<j

(xi − xj)(yi − yj)ψ = n(ν + µ)ψ.

Therefore

Φc(ψ) =
1

n(ν + µ)

∑
(yi − yj)Φc((yi − yj)ψ). (21)

By assumption, Φc((yi−yj)ψ) ∈ F a
j−1Lc = F ind

j−1Lc and hence Φc(ψ) ∈ F ind
j Lc. Thus (iv) ⇒ (i) is proved.
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When ψ ∈ eLc, we have (yk − yk+1)ψ ∈ (aj)⊥c by Lemma 3.6. As a consequence of Proposition 3.23, to
show F ind = F a we only need to consider elements in the form of

∑
hψ where ψ ∈ C[h]W and h ∈ Hc is not

a constant.
Proposition 3.23 also suggests that: to do induction, it is sufficient to show (yk − yk+1)ψ ∈ (aj)⊥c for all

k if ψ ∈ (aj+1)⊥c . This is our goal in the next section.

4 The kernel of the Dunkl form and the coinvariant algebra
4.1 The kernel of the Dunkl form

Throughout we assume c = m
n > 1 for positive integer m coprime to n. Define ui to be the elementary

symmetric polynomials satisfying
∏n

i=1(1 − xiz) =
∑
uiz

i (put u1 = 0). Let v(c)i be the polynomials such
that the formal Taylor expansion of the following equation holds:

(
∑

uiz
i)c =

∑
v
(c)
i zi.

For i = 1, . . . , n, define

fi = Coefzm

(
(1− xiz)

−1
n∏

k=1

(1− xkz)
c

)
=

m∑
j=0

xjiv
(c)
m−j

= Coefzm

∏
l ̸=i

(1− xlz)

n∏
k=1

(1− xkz)
c−1

 =

n−1∑
j=0

(−1)j
∑

l1<···<lj ,l1,··· ,js ̸=i

xl1 · · ·xlj

 v
(c−1)
m−j .

Lemma 4.1. For k < n, one has

xki + xk−2
i u2 + · · ·+ uk = (−1)k

∑
j1<···<jk,jℓ ̸=i

xj1 · · ·xjk .

As a consequence, xki = (−1)k
∑

j1<···<jk,jℓ ̸=i

xj1 · · ·xjk mod a.

Proof. We do induction on k. When k = 1, it follows from x1 + x2 + · · ·+ xn ∈ a. When k > 1, assume the
lemma is proved for integers less than k. Then by the induction hypothesis

xki =xi

(−1)k−1
∑

j1<···<jk−1,jℓ ̸=i

xj1 · · ·xjk−1
− (xk−3

i u2 + · · ·+ uk−1)


=(−1)k−1

∑
j1<···<jk−1,jℓ ̸=i

xixj1 · · ·xjk−1
− (xk−2

i u2 + · · ·+ xiuk−1)

=(−1)k−1

uk −
∑

j1<···<jk,jℓ ̸=i

xj1 · · ·xjk

− (xk−2
i u2 + · · ·+ xiuk−1)

=(−1)k
∑

j1<···<jk,jℓ ̸=i

xj1 · · ·xjk − (xk−2
i u2 + · · ·+ uk).

Therefore

fi =

n−1∑
j=0

(xji + xj−2
i u2 + · · ·+ uj)v

(c−1)
m−j . (22)

According to [Gor13, (4.2)], the summand v
(c−1)
m in fi can be expressed by

v(c−1)
m = (2(c− 1)− (m− 2))v

(c−1)
m−2 u2 + · · ·+ ((n− 1)(c− 1)− (m− n− 1))v

(c−1)
m−n+1un−1.
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Suppose kn < m < (k + 1)n. Then v
(c−1)
m−l ∈ ak for l = m − nk, · · · , n − 1, and v

(c−1)
m−l ∈ ak+1 when

l = 0, · · · ,m− nk − 1. Hence

fi ≡
n−1∑

j=m−nk

xjiv
(c−1)
m−j mod ak+1. (23)

Theorem 4.2. [Dun98, Chapter 5][CE03, Proposition 3.1][Gor13, Theorem 4.3] We have that
(i) Ic =

∑
i C[h]fi and

∑
i Cfi form the standard permutation representation of Sn.

(ii)
∑
xℓifi = −m+ℓ

c v
(c)
m+ℓ −

∑ℓ−1
j=1 v

(c)
m+jpℓ−j.

(iii) IWc = (v
(c)
m+1, · · · , v

(c)
m+n−1) and v(c)k ∈ IWc for k > m+ n− 1.

Given the expression (22) and (iii) of Theorem 4.2, we see that Ic is contained in the ideal generated by
IWc−1.

Remark 4.3. The generators v(c−1)
m−n+1, · · · , v

(c−1)
m−1 of IWc−1 form a regular sequence. As a result, dim(Lc/(I

W
c−1)) =

(m− n+ 1) · · · (m− 1) = dimHc · dim(eLc−1), which implies that Lc/(I
W
c−1)

∼= Hc ⊗C eLc−1.

4.2 Equality on F1

In this section and the next section, we will show F ind
1 = F a

1 . In the process we will acquire all the
ingredients needed for proving F ind

j = F a
j for j ≥ 1.

Take a nonzero polynomial φ ∈ (a2)⊥c ∩ a. Assume φ ≡
∑

k hkpk mod a2 for hk ∈ Hc. By Lemma 3.20
and 3.21, we may assume, in addition, pk ∈ IWc−1 mod a2. From Theorem 4.2, we know that IWc−1 mod a2 is
generated by v(c)m−n+1, · · · , v

(c)
n . Therefore to have IWc−1 6= 0 mod a2, the integer m has to satisfy n < m < 2n,

We will assume n < m < 2n for the rest of Section 4.2 and Section 4.3.
Now to show F ind

1 = F alg
1 , by Lemma 3.18, Lemma 3.20 and Proposition 3.23, we only need to show that

if (a lift of) φ :=
∑n

k=m−n+1 hkpk lying in C[h] ∩ (IWc−1) is such that (yi − yi+1)φ ∈ a for all i, then φ ∈ Ic.
Here hm−n+1, · · · , hn ∈ Hc.

We know that any element in Ic has the form
n∑

i=1

φifi =

n∑
i=1

φi

m∑
j=0

xm−j
i v

(c)
j . (24)

Replacing fi for i = 1, . . . , n by

fi ≡ xn−1
i v

(c−1)
m−n+1 + · · ·+ xm−n

i v(c−1)
n mod a2

and vj for j = m− n+ 1, . . . , n by
v
(c)
j ≡ cuj mod a2

we have the further expansion
n∑

i=1

φifi ≡ (c− 1)

n∑
i=1

φi

n∑
j=m−n+1

xm−j
i uj mod a2. (25)

Let R := C[h]/a be the coinvariant algebra. Using row vector multiplication, we have two linear maps

Rn Am−n,n−1−−−−−−−→ R2n−m Bm−n,n−1−−−−−−−→ Rn (26)

defined by the following matrices

Am−n,n−1 :=


xn−1
1 xn−2

1 · · · xm−n
1

xn−1
2 xn−2

2 · · · xm−n
2

· · ·
xn−1
n xn−2

n · · · xm−n
n

 , Bm−n,n−1 :=


xm−n
1 xm−n

2 · · · xm−n
n

xm−n+1
1 xm−n+1

2 · · · xm−n+1
n

· · ·
xn−1
1 xn−1

2 · · · xn−1
n

 . (27)

We will simply write A := Am−n,n−1, B := Bm−n,n−1 when there is no ambiguity.
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Lemma 4.4. (a)
∑n

m−n+1 hkpk ∈ Ic holds if and only if ((m− n+ 1)hm−n+1, · · · , nhn) ∈ Im(A).

(b) (yi − yi+1)
∑n

k=m−n+1 hkpk ∈ a holds for all i if and only if ((m− n+ 1)hm−n+1, · · · , nhn) ∈ Ker(B).

Proof. by Newton’s identity pk ≡ kuk mod a2, for k = 2, · · · , n. The equation

∑
hkpk ≡

∑
khkuk =

∑
φifi ≡ (c− 1)

n∑
i=1

φi
∑
k

xm−k
i kuk = (c− 1)

∑
k

(

n∑
i=1

φix
m−k
i )uk mod a2.

then implies ((m− n+ 1)hm−n+1, · · · , nhn) = (c− 1)(φ1 · · ·φn)A. This proves (a).
Because pk is symmetric, by [Gor13, Corollary 5.3] we have that

(yi − yi+1)(hkpk) = ((yi − yi+1)hk)pk + hk((yi − yi+1)pk).

The element (yi − yi+1)
∑

k hkyk is in a if and only if
∑

k hk((yi − yi+1)pk) is in a. The latter element is
equal to

∑
k khk(x

k−1
i − xk−1

i+1 ), because yi − yi−1 acts on symmetric polynomials by ∂
∂xi

− ∂
∂xi+1

.
This can be translated to

((m−n+1)hm−n+1, · · · , nhn)


xm−n
1 − xm−n

2 xm−n
2 − xm−n

3 · · · xm−n
n−1 − xm−n

n

xm−n+1
1 − xm−n+1

2 xm−n+1
2 − xm−n+1

3 · · · xm−n+1
n−1 − xm−n+1

n

· · ·
xn−1
1 − xn−1

2 xn−1
2 − xn−1

3 · · · xn−1
n−1 − xn−1

n

 = 0 mod a.

We add in a new column to the matrix in the last equation to define

B′ =


xm−n
1 − xm−n

2 · · · xm−n
n−1 − xm−n

n pm−n

xm−n+1
1 − xm−n+1

2 · · · xm−n+1
n−1 − xm−n+1

n pm−n+1

· · ·
xn−1
1 − xn−1

2 · · · xn−1
n−1 − xn−1

n pn−1

 .

As the last column in B′ is 0 mod a, ((m − n + 1)hm−n+1, · · · , nhn)B = 0 mod a is equivalent to
((m − n + 1)hm−n+1, · · · , nhn)B′ = 0 mod a. Finally notice that B can obtained from B′ by elementary
column operations. Therefore, Ker(B) = Ker(B′).

4.3 The coinvariant algebra
In this subsection, we prove that the sequence (26) is exact at the middle term.
Composing A and B gives

AB =


nxm−1

1

∑n−1
j=m−n x

j
1x

m−j−1
2 · · ·

∑n−1
j=m−n x

j
1x

m−j−1
n∑n−1

j=m−n x
j
2x

m−j−1
1 nxm2 · · ·

∑n−1
j=m−n x

j
2x

m−j−1
n

· · ·
· · ·∑n−1

j=m−n x
j
1x

m−j−1
n · · · nxmn

 .

We will show AB = 0 mod a below, which implies Im(A) ⊂ Ker(B) for n < m < 2n.

Lemma 4.5. For i 6= j and k < n− 1, we have

xki + xk−1
i xj + · · ·+ xix

k−1
j + xkj = (−1)k

∑
j1<···<jk,jℓ ̸=i,j

xj1 · · ·xjk mod a.

Proof. We do induction on k. When k = 1, this follows from x1 + x2 + · · ·+ xn ∈ a. Assume the lemma is
proved for integer less than k where k ≥ 2. By Lemma 4.1, we have

xkj = xj((−1)k−1
∑

j1<···<jk−1,jℓ ̸=j

xj1 · · ·xjk−1
) mod a. (28)
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On the other hand, notice that

−
∑

j1<···<jk,jℓ ̸=i,j

xj1 · · ·xjk = xi
∑

j1<···<jk−1,jℓ ̸=i

xj1 · · ·xjk−1
+ xj

∑
j1<···<jk−1,jℓ ̸=j

xj1 · · ·xjk−1
mod a. (29)

Now by the induction hypothesis (modulo a below)

xki =xi

(−1)k−1
∑

j1<···<jk−1,jℓ ̸=i,j

xj1 · · ·xjk−1
− (xk−2

i xj + · · ·+ xk−1
j )


=(−1)k−1

∑
j1<···<jk−1,jℓ ̸=i,j

xixj1 · · ·xjk−1
− (xk−1

k xj + · · ·+ xix
k−1
j )

(by (29)) =(−1)k

 ∑
j1<···<jk,jℓ ̸=i,j

xj1 · · ·xjk + (
∑

j1<···<jk−1,jℓ ̸=j

xjxj1 · · ·xjk−1
)

− (xk−1
k xj + · · ·+ xix

k−1
j )

(by (28)) =(−1)k
∑

j1<···<jk,jℓ ̸=i,j

xj1 · · ·xjk − (xk−1
k xj + · · ·+ xix

k−1
j + xkj ).

Corollary 4.6. For m ≥ n, the element φij := xm−n
i xn−1

j + xm−n+1
i xn−2

j + · · ·+ xn−1
i xm−n

j is in a.
Thus, AB = 0, Im(A) ⊂ Ker(B) and rank(A) + rank(B) ≤ (2n−m)n!.

It remains to show rank(A)+rank(B) = (2n−m)n!. We first show the following lemma.

Lemma 4.7. rank(A) = rank(B) and so rank(A) ≤ 2n−m
2 n!.

Proof. Computing the rank of A by taking the span of its column vectors we obtain

rank(A) = dimC{φ1(xn−1
1 , · · · , xn−1

n ) + · · ·+ φ2n−m(xm−n
1 , · · · , xm−n

n ), φi ∈ R}.

Computing the rank of B by taking the span of its row vectors we obtain

rank(B) = dimC{ψ1(x
m−n
1 , · · · , xm−n

n ) + · · ·+ ψ2n−m(xn−1
1 , · · · , xn−1

n ), ψi ∈ R}.

As a result, rank(A) =rank(B).

It remains to show rank(A) ≥ 2n−m
2 n!. Write Vi := R(xn−1

i , · · ·xm−n
i ), the R-submodule in R2n−m

generated by the i-th row vector of A. Then rank(A) = rank(B) = dimC(V1 + · · ·+ Vn).
From now on, let Ri denote the coinvariant algebra of i variables and Imn(x

n−1
i ) := Im(xn−1

i ,Rn → Rn).
Note that the composition

Imn(x
n−1
i )

(xn−1
i )T

−−−−−→ Rn → Rn/Imn(xi)

is an isomorphism and Rn/Imn(xi) ∼= Rn−1. Let ιi : Imn(x
n−1
i ) → Rn−1 denote this isomorphism.

Then ι1(Imn(x
n−1
1 ) ∩ Imn(x

n−1
2 )) = Kern−1(x2) = Imn−1(x

n−2
2 ) ∼= Rn−2.

When m = 2n − 1, Vi = Ker(xi) = Im(xn−1
i ) and from the discussion above we deduce that dim(Vi) =

(n− 1)! and dim(Vi ∩ Vj) = (n− 2)! when 1 ≤ i, j ≤ n and i 6= j. In general:

Lemma 4.8. • When n < m < 2n, dim(Vi) = (2n−m)(n− 1)!

• When 1 ≤ i, j ≤ n and i 6= j, dim(Vi ∩ Vj) = (2n−m)(n− 2)!

Proof. Define an operator Ji : R2n−m
n → R2n−m

n given by the following matrix using row multiplication

Ji :=


1 0 · · · 0 0

−xi 1 · · · 0 0
0 −xi · · · 0 0

· · ·
0 0 · · · −xi x2n−m

i


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For example Ji = xi when m = 2n− 1. Then Vi = Ker(Ji) ∼= Ker(x2n−m
i ) is of dimension (2n−m)(n− 1)!.

Let
(
Ji Jj .

)
denote concatenation of the matrices Ji and Jj . When i 6= j, dim(Vi∩Vj) = dimKer

(
Ji Jj .

)
Using elementary matrix transformations,

(
Ji Jj

)
can be transformed into

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0

· · · · · · · · ·
0 0 · · · x2n−m

i 0 · · · xi − xj x2n−m
j


Therefore, dimKer

(
Ji Jj

)
= dimKer(x2n−m

i xi − xj x2n−m
j ).

Since (xi − xj)|(x2n−m
i − x2n−m

j ), we get

Ker(x2n−m
i xi − xj x2n−m

j ) = Ker(x2n−m
i xi − xj).

Without loss of generality, we may assume i = 1 and j = 2.
By Lemma 4.9 below, one has Ker(x1 − x2) =

∑n−1
j=1 ψjRn−2 where

ψj := xj1x
n−2
2 + 2xj+1

1 xn−3
2 + · · ·+ (n− j)xn−1

1 xj−1
2 ∈ Ker(x1 − x2).

In particular, ψm−n, ψm−n+1, · · · , ψn−1 ∈ Ker(x2n−m
1 ). Since multiplication by x2n−m

1 preserves the
basis
xa1
1 x

a2
2 · · ·xan−1

n−1 (0 ≤ ai ≤ n− i) (possibly sending some elements to 0), we conclude that

ψm−nRn−2 + · · ·+ ψn−1Rn−2 = Ker(x2n−m
1 ) ∩Ker(x1 − x2),

and so dim(V1 ∩ V2) = dimKer(J1 J2) = dim(Ker(x2n−m
1 ) ∩Ker(x1 − x2)) = (2n−m)(n− 2)!.

Lemma 4.9. Let Rn−2 ⊂ Rn be generated by xa3
3 x

a4
4 · · ·xan−1

n−1 , 0 ≤ ai ≤ n− i. For 1 ≤ j ≤ n− 1, write

ψj := xj1x
n−2
2 + 2xj+1

1 xn−3
2 + · · ·+ (n− j)xn−1

1 xj−1
2

Then
∑n−1

j=1 ψjRn−2 = Ker(x1 − x2,Rn → Rn).

Proof. We compute

(x1 − x2)(x
j
1x

n−2
2 + 2xj+1

1 xn−3
2 + · · ·+ (n− j)xn−1

1 xj−1
2 )

=− xj1x
n−1
2 + xj+1

1 xn−2
2 − 2xj+1

1 xn−2
2 + 2xj+2

1 xn−3
2 + · · · − (n− j)xn−1

1 xj2 + (n− j)xn1x
j−1
2

=− xj1x
n−1
2 − xj+1

1 xn−2
2 − · · · − xn−1

1 xj2.

The element in the last line belongs to a by Corollary 4.6.
Next, consider the basis xa1

1 · · ·xan−1

n−1 ordered by lexicographic order on the powers. With respect to this
basis, multiplication by x1 can be expressed by

N ⊗ I(n−1)!

where Ik stands for the k × k identity matrix and

N :=


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

· · ·
0 0 · · · 1 0


n×n

Multiplication by x2 can be expressed by
0 0 · · · 0 −Nn−1

I 0 · · · 0 −Nn−2

0 I · · · 0 −Nn−3

· · ·
0 0 · · · I −N

⊗ I(n−2)!
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Observe that, using elementary row operations, the following matrix that represents multiplication by x2−x1
−N 0 · · · 0 −Nn−1

I −N · · · 0 −Nn−2

0 I · · · 0 −Nn−3

· · ·
0 0 · · · I −2N

⊗ I(n−2)!

can be transformed to 
0 0 · · · 0 −nNn−1

I 0 · · · 0 −(n− 1)Nn−2

0 I · · · 0 −(n− 2)Nn−3

· · ·
0 0 · · · I −2N

⊗ I(n−2)!

By column operations we transform it to
0 0 · · · 0 −nNn−1

I 0 · · · 0 0
0 I · · · 0 0

· · ·
0 0 · · · I 0

⊗ I(n−2)!

Since rank(Nn−1) = 1, we see dim(Ker(x1 − x2)) = (n− 1)(n− 2)!. The lemma follows.

Lemma 4.10. dim(V1 ∩ (V2 + · · ·+ Vi)) ≤ (i− 1)(2n−m)(n− 2)!.

Proof. Define Ji as in the proof of Lemma 4.8 and for β ≥ 2 put J[2,β] = J2J3 · · · Jβ . Consider the following
short exact sequences:

0 → V1 ∩ V2 → V1 ∩ (V2 + · · ·+ Vi)
J2−→ (V1 ∩ (V2 + · · ·+ Vi))J2 → 0,

0 → [(V1 ∩ (V2 + · · ·+ Vi))J2] ∩ V3 → (V1 ∩ (V2 + · · ·+ Vi))J2
J3−→ (V1 ∩ (V2 + · · ·+ Vi))J[2,3] → 0,

· · · · · ·

0 → [(V1 ∩ (V2 + · · ·+Vi))J[2,i−2]]∩Vi → (V1 ∩ (V2 + · · ·+Vi))J[2,i−2]
Ji−1−−−→ (V1 ∩ (V2 + · · ·+Vi))J[2,i−1] → 0.

We claim that when j = 1, 2, . . . , i− 1

[(V1 ∩ (V2 + · · ·+ Vi))J[2,i−1]] ∩ Vj ⊂ [V1 ∩Ker(J[2,j])]J[2,j−1] ⊂ V1 ∩ Vj . (30)

First of all, Ker(J[2,j])J[2,j−1] ⊂ Ker(Jj) = Vj , from which the second containment follows. As for the first
containment, take v1 = v2 + · · ·+ vi ∈ V1 ∩ (V2 + · · ·+ Vi) where vj ∈ Vj for all j. If v1J[2,j−1] ∈ Vj , then

(vj+1 + · · ·+ vi)J[2,j] = 0,

i.e. vj+1 + · · · + vi ∈ Ker(J[2,j]). As a result, v1 ∈ V1 ∩ (V2 + · · · + Vj + Ker(J[2,j])) = V1 ∩ Ker(J[2,j]) and
v1J[2,j−1] ∈ [V1 ∩Ker(J[2,j])]J[2,j−1]. Hence the claim is proved.

As a consequence of the short exact sequences and the claim,

dim(V1 ∩ (V2 + · · ·+ Vi))

=dim(V1 ∩ V2) + dim((V1 ∩ (V2 + V3))J2) + · · ·+ dim((V1 ∩Ker(J[2,i])J[2,i−1])

≤dim(V1 ∩ V2) + dim(V1 ∩ V3) + · · ·+ dim(V1 ∩ Vi). (31)

The last line equals to (i− 1)(2n−m)(n− 2)! by Lemma 4.8.

Proposition 4.11. We have a vector space decomposition:

V1 ∩ (V2 + · · ·+ Vi) ∼= (V1 ∩ V2)⊕ · · · ⊕ (V1 ∩ Vi). (32)
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Proof. We compute

rank(A) = dim(V1 + · · ·+ Vn)

=dim(V1) + (dim(V2)− dim(V1 ∩ V2)) + · · ·+ (dim(Vn)− dim(Vn ∩ (V1 + · · ·+ Vn−1)))

=n(2n−m)(n− 1)!− (dim(V1 ∩ V2) + dim(V3 ∩ (V1 + V2)) + · · ·+ dim(Vn ∩ (V1 + · · ·+ Vn−1)))

≥n(2n−m)(n− 1)!−
(
(2n−m)(n− 2)! + 2 · (2n−m)(n− 2)! + · · ·+ (n− 1) · (2n−m)(n− 2)!

)
=(2n−m)

n(2n− 2− (n− 1))

2
(n− 2)! =

2n−m

2
n!

Here the second equality follows from Lemma 4.8 and the third equality follows from Lemma 4.10. By
Corollary 4.7, we conclude that dim(V1 + · · · + Vn) = 2n−m

2 n!. Therefore, (31) is actually an equality for
i = 1, · · · , n, the inclusions (30) are equalities. Thus the short exact sequences in the proof of Lemma 4.10
yields (32).

Corollary 4.12. We have dimC(V1 + · · ·+ Vk) =
2n−m

2 k(2n− 1− k)n! for 1 ≤ k ≤ n.
In particular rank(A) = 2n−m

2 n! and Im(A) = Ker(B).

Proof. We compute

dim(V1 + · · ·+ Vk) = dim(V1) + (dim(V2)− dim(V1 ∩ V2)) + · · ·+ (dim(Vk)− dim(Vk ∩ (V1 + · · ·+ Vk−1)))

=k(2n−m)(n− 1)!− (dim(V1 ∩ V2) + dim(V3 ∩ (V1 + V2)) + · · ·+ dim(Vk ∩ (V1 + · · ·+ Vk−1)))

=k(2n−m)(n− 1)!−
(
(2n−m)(n− 2)! + 2 · (2n−m)(n− 2)! + · · ·+ (k − 1) · (2n−m)(n− 2)!

)
=(2n−m)

k(2n− 2− (k − 1))

2
(n− 2)! =

2n−m

2
k(2n− 1− k)n!

Remark 4.13. The dimension count of Corollary 4.12 implies that Im(A) = Ker(B) is a Lagrangian
subspace in H∗(B)⊕(2n−m) (where B is the flag variety) with respect to the Poincare form defined by

(α, β) = d, if α ∪ β = d · δ⊕(2n−m).

Corollary 4.14. If
∑
hkpk ∈ Hc · (IWc−1 ∩ C[h]W1 ) and (yi − yi+1)(

∑
hkpk) ∈ a holds for all i, then∑

hkpk ∈ Ic.

Proof. By Lemma 4.4 and Corollary 4.12.

Corollary 4.15. We have F ind
1 Lc = F a

1 Lc for all c > 1.

Proof. Lemma 3.17 says F ind
1 Lc ⊂ F a

1 Lc. Lemma 3.18 guarantees that the assumptions of Lemma 3.20
and Proposition 3.23 hold. Lemma 3.20 implies Φc(S1,⊥c) ⊂ F ind

1 Lc. Corollary 4.14 implies part (iii) of
Proposition 3.23 and therefore Φc(S1) ⊂ F ind

1 Lc.

Example 4.16. (See figure 2) Consider c = 5
3 , where dim(L) = 53−1 = 25. Based on Example 3.19, it

remains to determine where p3ξi lies (recall that ξi = xi − xi+1). Note that Φc(p2)(p3ξi) ∈ estLc is of
weight −2 and hence can not be symmetric. Therefore Φc(p

2
2)(p3ξi) must be 0 and thus p3ξi ∈ (a2)⊥c . Since

p3 ∈ IW2
3

, it follows from Corollary 4.12 that (yk − yk+1)(p3ξi) ∈ Hc for k = 1, 2. This is not obvious by
direct computation.

4.3.1 Springer fiber at the minimal nilpotent orbit

There is a mysterious relationship between the matrices A, B and the minimal Springer fiber.
Let G = SLn with Lie algebra g and B ⊂ G the Borel consisting of upper triangular matrices. Let b be

the Lie algebra of B with nilpotent radical n = [b, b].
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Figure 2: Filtrations from example 4.16 where the numbers on the bottom indicate h-weights

Let N be the nilpotent cone in g, there is a unique minimal nilpotent G-orbit consisting of nilpotent
elements in g of rank 1. Let emin be an element of this orbit and Bmin the fiber of the Springer map
G×B n → N over emin. By [DCP81] one knows that

H∗(Bmin) = C[h]/[(C[h]W+ ) + (xn−1
1 , · · · , xn−1

n )].

In the case of m = 2n − 1, the right hand side is exactly R/Im(A) = R/Ker(B) ∼= Im(B). Now because
H∗(Bmin) ∼= indSn

S2
triv, its dimension is exactly n!

2 . This gives a different proof of Corollary 4.12 when
m = 2n− 1. We do not know how to generalize it to arbitrary n < m < 2n.

4.4 Fℓ for ℓ ≥ 1

Recall the subspace Sℓ := 〈hψ ∈ (aℓ+1)⊥c

ℓ |h ∈ Hc, ψ ∈ IWc−1∩aℓ〉 which satisfies Φc(Sℓ) ⊂ F a
ℓ Lc. Our goal

in this section is to show that Φc(Sℓ) ⊂ F ind
ℓ Lc. The following lemma is the easiest case of Lemma 4.18. It

is stated separately to demonstrate the proof method in general.

Lemma 4.17. Suppose kn < m < (k + 1)n. If φ ∈ Sk and (yi − yi+1)φ ∈ ak for all i, then φ ∈ Ic.

Proof. We simplify the notation vi := v
(c−1)
i . From Theorem 4.2, we know that IWc−1 mod ak+1 is spanned

by vm−n+1, · · · , vkn. Therefore

φ ≡
kn∑

α=m−n+1

gαvα mod ak+1 (33)

where gα ∈ Hc.
For α = m− n+ 1, · · · , kn, by definition

vα ≡
(
c− 1

k

) ∑
j1+···+jk=α

uj1 · · ·ujk mod ak+1.

We can order uj1 · · ·ujk so that j1 ≥ j2 ≥ · · · ≥ jk and use the lexicographic order. Under this order,
uk−1
n uα−(k−1)n is the maximal term. Since pk ≡ kuk mod a, we have that

φ = (
gm−n+1

m− n+ 1
pm−kn+1 + · · ·+ gkn

n
pn)u

k−1
n + lower terms in lexicographic order modulo ak+1 .
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Then modulo ak+1, the part in (yi − yi+1)φ that is divisible by uk−1
n is the product of uk−1

n and(
gm−n+1(x

m−kn
i − xm−kn

i+1 ) + · · ·+ gkn−1(x
n−2
i − xn−2

i+1 ) + kgkn(x
n−1
i − xn−1

i+1 )
)
. (34)

The factor k in the last summand comes from the multiplicity of pn in pkn being k.
Hence (yi − yi+1)φ ∈ ak implies that for all i, the polynomial (34) lies in a. This means that

(gm−n+1, · · · , gkn−1, kgkn) ∈ Ker(Bm−kn,n−1) modulo a.

By Corollary 4.12, there exist hj ∈ Hc such that one has an equality

(gm−n+1, · · · , gkn−1, kgkn) = (h1, · · · , hn)Am−kn,n−1 modulo a.

Therefore, by (22) and (33) we have

φ =
∑
j

(
hjx

n−1
j vm−n+1 + · · ·+ hjx

m−n
j vkn

)
− (k − 1)vkn modulo ak+1.

=
∑
j

hj(x
n−1
j vm−n+1 + · · ·+ xm−n

j vkn)− (k − 1)vkn modulo ak+1.

Combining with equation (23): fi ≡
∑n−1

j=m−nk x
j
ivm−j mod ak+1, we see that

φ =
∑
j

hjfj − (k − 1)gknvkn modulo ak+1.

It remains to show gknvkn ∈ Ic. Notice that (k − 1)(yi − yi+1)(gknvkn) = (yi − yi+1)(φ −
∑
hjfj) ∈ ak

for all i implies that (0, · · · , 0, gkn) ∈ Ker(Bm−kn,n−1). Applying Proposition 4.12, we deduce that there
exists h′i ∈ Hc such that (0, · · · , 0, gkn) = (h′1, · · · , h′n)Am−kn,n−1. Therefore gknvkn ≡

∑
h′ifi mod ak and

gknvkn ∈ Ic.

Proposition 4.18. Suppose kn < m < (k + 1)n and ` ≥ k. If φ ∈ Sℓ and (yj − yj+1)φ ∈ aℓ for all j, then
φ ∈ Ic.

Proof. Write φ =
∑m−1

i=m−n+1 φivi where φm−n+1, · · · , φnk ∈ aℓ−k and φnk+1, · · · , φm−1 ∈ aℓ−k+1. Assume
(i1, · · · , iℓ) (i1 ≥ i2 · · · ≥ iℓ) is the largest sequence under the lexicographic order such that ui1 · · ·uiℓ shows
up in φ with a nonzero coefficient in Hc. We will use fi to kill this nonzero term in φ without adding higher
order terms and as a result, the lemma will follow from induction on (i1, · · · , iℓ).

By definition, one has

vα ≡
(
c− 1

s

) ∑
j1+···+js=α

uj1 · · ·ujs mod as+1

where s = k when m− n+ 1 ≤ α ≤ nk and s = k + 1 when nk + 1 ≤ i ≤ m− 1. The largest term is either
case 1: uα−nku

k
n when nk + 2 ≤ i ≤ m− 1; case 2: u2un−1u

k−1
n when i = nk + 1 or case 3: uα−n(k−1)u

k−1
n

when m− n+ 1 ≤ i ≤ nk.

Case 1: Suppose ui1 · · ·uiℓ shows up in φαvα with nonzero coefficient with nk+1 < j ≤ m−1. We may
assume ui1 · · ·uiℓ = ui1 · · ·uiℓ−k−1

uknuα−nk. Up to some linear rearranging, we may also assume the nonzero
coefficient of this term completely comes from φαvα. In other words, the coefficients of ui1 · · ·uiℓ in φγvγ
for γ 6= α add up to be 0. Similarly, if the coefficient of ui1 · · ·uiℓ−k−1

uknuβ in φ is nonzero for β < α − nk,
we may assume the coefficient is completely contributed by ui1 · · ·uiℓ−k−1

vi for nk + 2 ≤ i ≤ m − 1 or
ui1 · · ·uiℓ−k−1

unvi for m− n+ 1 ≤ i ≤ nk (depending on the size of β).
Inside (yj −yj+1)φ,

(
(yj −yj+1)uα−nk

)
ui1 · · ·uiℓ−k−1

ukn can only be combined with like terms in the form
of
(
(yj − yj+1)uβ

)
ui1 · · ·uiℓ−k−1

ukn for β < α− nk.
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Assume the coefficients of ui1 · · ·uiℓ−k−1
unvi for m−n+1 ≤ i ≤ nk and ui1 · · ·uiℓ−k−1

vi for nk+2 ≤ i ≤
m−1 are hm−n+1, · · ·hnk, hnk+2, · · · , hm−1(with some of them being possibly 0.). To have (yj−yj+1)φ ∈ aℓ,
by Lemma 4.4, there has to be

(znk+2hnk+2, . . . , zm−1hm−1, 0, zm−n+1hm−n+1, · · · , znkhnk) ∈ Ker(B1,n−1) mod a.

for some positive integers zm−n+1, · · · , znk, znk+2, · · · , zm−1 due to possible nontrivial multiplicities (as in
(34)).

Since Ker(B1,n−1) = Im(A1,n−1), by Corollary 4.12 there exists (g1, · · · , gn) such that

(znk+2hnk+2, . . . , zm−1hm−1, 0, zm−n+1hm−n+1, · · · , znkhnk) = (g1, · · · , gn)A1,n−1 mod a.

Recall that by Lemma 4.1, un ≡ xni mod a while (22) says fi =
∑n−1

j=0 (x
j
i+x

j−2
i u2+· · ·+uj)v(c−1)

m−j . Therefore
modulo ak+2 we have

znk+1hnk+2vnk+2 + · · ·+ zm−1hm−1vm−1 + zm−n+1hm−n+1unhm−n+1 + · · ·+ znkhnkununk

=
∑
i

gi(x
n−1
i vnk+2 + · · ·+ x

(k+1)n−m+2
i vm−1 + x

n(k+1)−m
i unvm−n+1 + · · ·+ xiunvnk)

≡
∑
i

gix
n(k+1)−m+1
i fi.

Now write (∗) := φ− 1
zα
ui1 · · ·uiℓ−k+1

∑
gix

n(k+1)−m+1
i fi. Then (∗) still satisfies that (yj − yj+1)(∗) ∈ aℓ for

all j and the coefficient of ui1 · · ·uiℓ−k−1
uknuα−nk in (∗) is 0 with no higher-order summand added compared

to φ. Our goal is achieved.

Case 2: Suppose the nonzero coefficient of ui1 · · ·uiℓ in φ comes from φnk+1vnk+1 and so ui1 · · ·uiℓ =
ui1 · · ·uiℓ−k−1

u2un−1u
k−1
n . Similar as case 1, inside (yj − yj+1)φ, terms

(
(yj − yj+1)u2

)
ui1 · · ·uiℓ−k−1

ukn can
only be combined with like terms in the form of

(
(yj − yj+1)uβ

)
ui1 · · ·uiℓ−k−1

un−1u
k−1
n for β < 2, which are

0. Set the coefficient of uℓ1uiℓ−k−1
u2un−1u

k−1
n to be hnk+1. Then

(0, · · · , 0, hnk+1, 0, · · · , 0) ∈ Ker(B1,n−1) = Im(A1,n−1).

Here hnk+1 lies in the (n(k + 1)−m+ 1)-th entry. Therefore there exists gi ∈ Hc such that

hnk+1vnk+1 ≡
∑

gi(x
n−1
i vm−n+1 + · · ·+ xm−nk−1

i vnk+1 + · · ·xivm−1) =
∑

gifi mod ak+2.

Now the highest degree in φ− ui1 · · ·uiℓ−k−1

∑
gifi is lower than the original (i1, · · · , iℓ).

Case 3: Suppose the nonzero coefficient of ui1 · · ·uiℓ in φ comes from φαvα for m−n+1 ≤ α ≤ nk. Then
ui1 · · ·uiℓ = ui1 · · ·uiℓ−k

uk−1
n uα−n(k−1). Given case 1, we may assume i1, · · · , iℓ < n. If the coefficient of

ui1 · · ·uiℓ−k
uk−1
n uβ in φ is nonzero, we may assume the coefficient is completely contributed by ui1 · · ·uiℓ−k

vi
for m− n+ 1 ≤ i ≤ nk.

Inside (yj − yj+1)φ,
(
(yj − yj+1)uα−nk

)
ui1 · · ·uiℓ−k

uk−1
n can only be combined with like terms in the

form of
(
(yj − yj+1)uβ

)
ui1 · · ·uiℓ−k

uk−1
n for β < α − nk. Assume the coefficient of ui1 · · ·uiℓ−k

vi is hi,
i = m− n+ 1, · · · , nk (with some of the hi possibly being 0). Then

(zm−n+1hm−n+1, · · · , znkhnk) ∈ Ker(Bm−nk,n−1) = Im(Am−nk,n−1).

for some positive rational numbers zm−n+1, · · · , znk due to possible nontrivial multiplicities. Therefore there
exists gi ∈ Hc such that

zm−n+1hm−n+1hm−n+1 + · · ·+ znkhnkunk =
∑

gi(x
n−1
i vm−n+1 + · · ·+ x

m−n(k−1)+1
i vnk) mod ak+1,

and
ui1 · · ·uiℓ−k

(zm−n+1hm−n+1um−n+1 + · · ·+ znkhnkunk) ≡ ui1 · · ·uiℓ−k

∑
i

gifi mod aℓ+1.

Similar to the previous cases the highest degree in φ − 1
zα
ui1 · · ·uiℓ−k

∑
i gifi is lower than the original

(i1, · · · , iℓ).
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4.4.1 Proof of the main theorem

With all the puzzle pieces collected, we summarize the proof of Theorem 3.16.

Proof. By Corollary 3.12 and Lemma 3.17, we need to show F a
ℓ Lc ⊃ F ind

ℓ Lc for all ` ≥ 0 and c = m
n > 1

with (m,n) = 1. We do so by induction on both c using the order in the proof of Lemma 3.13 and Fℓ.
The base case of F0 is shown in Lemma 3.18 for any c > 1. On the other hand, for all c > 0

F a
0 eLc = C · 1 = F ind

0 eLc.
For c > 1 and ` > 0, assume we have shown that F a

i eLc′ = F ind
i eLc′ for all i ≥ 0 and c′ such that c′ ≺ c,

and assume also that F a
ℓ′Lc = F ind

ℓ′ Lc for 0 ≤ `′ < `. Note that because F a and F ind are both compatible
with the isomorphism eLm

n
= eL n

m
when n,m > 1, and that n

m ≺ m
n when n > m, our assumptions also

imply that F a
i eLc−1 = F ind

i eLc−1 for all i ≥ 0.
Now take a homogeneous φ ∈ (aℓ+1)⊥c such that 0 6= Φc(φ) ∈ F a

ℓ Lc. If φ ∈ S⊥c

ℓ , by Lemma 3.20, we
conclude from the induction hypothesis on c that Φc(φ) ∈ F ind

ℓ Lc.
Hence we may assume φ ∈ Sℓ, in which case ` ≥ bcc. If φ ∈ C[h]W , then by Lemma 3.6, (yi − yi+1)φ ∈

(aℓ)⊥c ; if φ /∈ C[h]W , Proposition 4.18 implies that (yi − yi+1)φ ∈ (aℓ)⊥c . Because ` > 0, Φc(φ) is not a
highest weight vector. Now the equality (21) and the inductive hypothesis on Fℓ implies that Φc(φ) ∈ F ind

ℓ Lc.
This concludes the proof of Theorem 3.16.

4.5 Description of F a for c < 1

Let c = m
n < 1 for positive integer m coprime to n. Inside Lc one can define Hc := a⊥c and it still holds

that Lc = Hc · eLc. In this setting, Hc is now only a proper submodule of the regular representation of Sn.

Proposition 4.19. For all 1 ≤ k ≤ n− 1, ` > 0 and Φc(φ) ∈ F a
ℓ Lc, we have Φc((yk − yk+1)φ) ∈ F a

ℓ−1Lc.

Proof. We first note that when c < 1 the equivalence of statements in Proposition 3.23 holds for the whole
Lc rather than merely Sℓ. Therefore we only need to show that if φ ∈ (aℓ+1)⊥c ∩aℓ satisfies (yk−yk+1)φ ∈ aℓ

for all k = 1, . . . , n− 1 then φ ∈ Ic.
We first prove the case when ` = 1. Recall the ideal Ic ⊂ C[h] is generated by

fi =

m∑
j=0

xjiv
(c)
m−j , i = 1, · · · , n

where
v
(c)
j ≡ cuj mod a, j = 2, · · · , n

Take φ :=
∑n

i=2 hipi ∈ (a2)⊥c where hi ∈ Hc. Since the proposition holds when φ is symmetric by
Lemma 3.6, we may assume that h2, . . . , hn are non-constant. By Lemma 4.4, (yk − yk+1)φ ∈ a for all
k = 1, · · · , n− 1 if and only if (2h2, · · · , nhn) ∈ Ker(B2,n−1). By Corollary 4.12, there exists g1, · · · , gn such
that (2h2, · · · , nhn) = (g1, · · · , gn)A2,n−1. Therefore,

n∑
i=2

hipi ≡
n∑

i=2

ihiui ≡
n∑

j=1

n∑
i=2

gjx
n+1−i
j ui mod a.

Note that c
∑m

i=2 x
n+1−i
j ui ≡ xn+1−m

j (fj − xmj ) mod a. Thus we obtain that

n∑
j=1

n∑
i=2

gjx
n+1−i
j ui ≡

1

c

n∑
j=1

gj

(
xn+1−m
j (fj − xmj ) + xn−m

j v
(c)
m+1 + · · ·+ xjv

(c)
n

)
mod a

≡1

c

n∑
j=1

gj

(
xn+1−m
j fj + xn−m

j v
(c)
m+1 + · · ·+ xjv

(c)
n

)
mod a.

The second equality follows as xn+1
j ∈ a. Since the ideal IWc ⊂ C[h]W is generated by v(c)m+1, . . . , v

(c)
m+n−1, we

conclude that
∑n

i=2 hipi ∈ Ic.
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When ` > 1, suppose (yk − yk+1)φ ∈ aℓ+1 for all k. Assume (i1, · · · , iℓ) (i1 ≥ i2 · · · ≥ iℓ) is the largest
sequence under the lexicographic order such that ui1 · · ·uiℓ shows up in φ with a nonzero coefficient in
Hc. Similar to the proof of Proposition 4.18, we will use fi to kill this nonzero term in φ without adding
higher-order terms, and as a result, the proposition will follow from induction on (i1, · · · , iℓ).

For γ = 2, . . . , iℓ, let hγ ∈ Hc be the coefficient of ui1 · · ·uiℓ−1
uγ in φ. Inside (yk − yk+1)φ, hiℓ

(
(yk −

yk+1)uiℓ
)
ui1 · · ·uiℓ−1

can only be combined with like terms in the form of hγ
(
(yk − yk+1)uγ

)
ui1 · · ·uiℓ−1

for
γ = 2, . . . , iℓ − 1. Therefore (yk − yk+1)φ ∈ aℓ+1 for all k implies that

(z2h2, · · · , znhn) ∈ Ker(B1,n−1) mod a

where zi’s are integers with ziℓ 6= 0 and zγ = 0 for γ > iℓ. By the discussion above in the case of ` = 1,
we can express

∑n
γ=2 zγhγuγ by f1, . . . , fn. Write (∗) := φ − 1

ziℓ
(
∑n

γ=2 zγhγuγ)ui1 · · ·uiℓ−1
. Then (∗) still

satisfies (yk − yk+1)(∗) ∈ aℓ for all k and the coefficients of ui1 · · ·uiℓ in (∗) is 0 with no higher-order term
added compared to φ. This concludes the proof of the proposition.

A Distributive lattices
One can use the language of distributive lattice to further describe the structure captured by (32) in

Proposition 4.11.
Following [BGS88] [Bez95], we define the following notions:

• A set of subspaces of vector space U is called a lattice if it is closed under taking sum and intersections.

• A lattice is called distributive if U1 ∩ (U2 +U3) = (U1 ∩U2) + (U1 ∩U3) for any elements U1, U2, U3 in
the lattice.

• A n-tuple (U1, · · · , Un) of subspaces in U is called distributive if the lattice generated by U1, · · · , Un

is distributive.

• A n-tuple is called predistributive if all the (n − 1)-tuples (U1, . . . , Ûi, · · · , Un), i = 1, · · · , n, are
distributive.

• A n-tuple is called acyclic if all the 3-triples (U1 ∩ · · · ∩Ui, Ui+1, Ui+2 + · · ·+Un), i = 1, · · · , n− 2, are
distributive.

Lemma A.1. [BGS88, Lemma 4.5.2] A n-tuple (U1, · · · , Un) of subspaces in U is distributive if and only if
it is both predistributive and acyclic.

Write Vi = {(xn−1
i φ, · · ·xm−n

i φ)|φ ∈ R} ⊂ R2n−m
n for i = 1, 2, · · · , n. We will finally show that

Proposition A.2. The n-tuple (V1, · · · , Vn) is distributive.

To prove this, we first establish the following lemma:

Lemma A.3. For any 1 ≤ j < i, we have

V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi) = (V1 ∩ · · · ∩ Vj ∩ Vj+1) + (V1 ∩ · · · ∩ Vj ∩ Vj+2) + · · ·+ (V1 ∩ · · · ∩ Vj ∩ Vi)

Proof. Consider the short exact sequences

V1∩V2∩· · ·∩Vj ∩Vj+1 → V1∩V2∩· · ·∩Vj ∩ (Vj+1+ · · ·+Vi)
Jj+1−−−→ (V1∩V2∩· · ·∩Vj ∩ (Vj+1+ · · ·+Vi))Jj+1

[(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1] ∩ Vj+2 →(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1

Jj+2−−−→ (V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1Jj+2

· · · · · ·
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[(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1 · · · Ji−2] ∩ Vi → (V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1 · · · Ji−2

Ji−1−−−→ (V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1 · · · Ji−1,

from which we obtain

dimV1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi) =dimV1 ∩ V2 ∩ · · · ∩ Vj ∩ Vj+1

+ dim[(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1] ∩ Vj+2 + · · ·
+ dim(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1 · · · Ji−1.

On the other hand, for 1 ≤ j < 1 and 1 ≤ k ≤ i− j, there are inclusions

[(V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi))Jj+1 · · · Jj+k−1] ∩ Vj+k

⊂[V1 ∩ · · · ∩ Vj ∩Ker(Jj+1 · · · Jj+k)]Jj+1 · · · Jj+k−1 ⊂ V1 ∩ · · · ∩ Vj ∩ Vj+k.

As a consequence

dimV1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi) ≤
i−j∑
k=1

dimV1 ∩ · · · ∩ Vj ∩ Vj+k.

Therefore the inclusion

V1 ∩ · · · ∩ Vj ∩ (Vj+1 + · · ·+ Vi) ⊃ (V1 ∩ · · · ∩ Vj ∩ Vj+1) + (V1 ∩ · · · ∩ Vj ∩ Vj+2) + · · ·+ (V1 ∩ · · · ∩ Vj ∩ Vi)

has to be an equality.

Now we are ready to prove Proposition A.2.

Proof of Proposition A.2. We show the lemma by induction. The cases of n = 1 or 2 is trivial. When n = 3,
a 3-tuple (U1, U2, U3) is distributive if and only if U1 ∩ (U2 +U3) = (U1 ∩U2) + (U1 ∩U3) ([BGS88, example
after Lemma 4.5.1]). Our (V1, V2, V3) satisfies this property.

Now assume any (n − 1)-subtuple of (V1, · · · , Vn) is distributive. In other words, (V1, · · · , Vn) is pre-
distributive. By Lemma A.1, it only remains to show that (V1, · · · , Vn) is acyclic, i.e. all the 3-triples
(V1 ∩ · · · ∩ Vi, Vi+1, Vi+2 + · · ·+ Vn), i = 1, · · · , n− 2, are distributive. But this follows from the identity

V1 ∩ · · · ∩ Vi ∩ (Vi+1 + (Vi+2 + · · ·+ Vn))

=(V1 ∩ · · · ∩ Vi ∩ Vi+1) + (V1 ∩ · · · ∩ Vi ∩ Vi+2) + · · ·+ (V1 ∩ · · · ∩ Vi ∩ Vn)
=(V1 ∩ · · · ∩ Vi ∩ Vi+1) + (V1 ∩ · · · ∩ Vi ∩ (Vi+2 + · · ·+ Vn)))

using Lemma A.3 twice.
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