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Abstract

In [GORS14], the HOMFLY polynomial of the (m,n) torus knot Ty, is extracted from the doubly
graded character of the finite-dimensional representation Lm of the type A, rational Cherednik algebra.
It is furthermore conjectured in loc. cit. that one can obtain the triply-graded Khovanov-Rozansky
homology of Tp,,» by considering a certain filtration on Lm. In this paper, we show that two of the
proposed candidates, the algebraic filtration and the inductive filtration, are equal.
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1 Introduction

1.1 The rational Cherednik algebra and link homology

The HOMFLY polynomial is a link invariant defined by the skein relation in the form of a two-variable
polynomial, generalizing the one-variable Alexander polynomial and the Jones polynomial. In the early
2000s, these link polynomials were realized as Euler characteristics of various link homology theories. This
process was inspired by the ideas of “categorification”, for a survey, see | ]. Remarkably, the HOMFLY
polynomial was categorified by the Khovanov—Rozansky (KhR) link homology using matrix factorization
[ ]. Soon after, the construction of the KhR homology was modified using Hochschild homology of
Soergel bimodules (hence the notation HHH), which revealed the connection between link invariants and
Kazhdan-Lusztig theory | ]. The past twenty years have seen a large variety of incarnations of KhR
homology, to name a few: the (co)homology of braid/positroid /Richardson varieties, affine/global Springer
theory, coherent sheaves on the Hilbert scheme of points and representation theory of double affine Hecke
algebras (for a survey, see | D-

This paper will focus on the representation theoretic model of the KhR homology. Let m,n be a coprime
positive integer pair and let b denote the (n — 1)-dimensional standard representation of the symmetric
group S,,. The rational Cherednik algebra H= (also called rational DAHA) is a deformation of D(h) x Sy,
at the parameter ™ where D(h) is the ring of differential operators on ). The algebra Hm has a unique
finite-dimensional irreducible representation which we denote by Lm . Under the action of the "Euler field, Lm
decomposes into a direct sum of eigenspaces, allowing us to define the associated q-graded Euler characterstic
chy(Lz) = Y, dim(L= (i))¢". In | ], the authors recover the HOMFLY polynomials of the (m,n)
torus knot T n from the graded character of (the hook S,,-isotypic components of) L= by comparing explicit
computational results of both sides:

Theorem 1.1. / , Theorem 1.1]

n—1
HOMFLY o ¢ (Tn.n) = a0y " g2ch, (Homsg, (A'(h), Le)). (1)
=0

As mentioned above, the HOMFLY polynomial is the doubly graded Euler characteristic of the KhR
homology. In fact, the KhR homology is a triply graded knot invariant whose full characteristic is the so-

called “link superpolynomial”. As seen in Theorem 1.1, the internal ¢-grading of HHH corresponds to the
weight space decomposition of L.; the Hochschild homological a-grading corresponds to the (hook-)isotypic
components of L=. The main conjecture of [ | is that the third usual homological t-grading on the

KhR homology should be given by a filtration on L :

Conjecture 1.2. [ , Conjecture 1.2] There exists a filtration on L. whose associated t-grading in
(1) yields the refined identity

n—1

cha,qt(HHH (T, ) = a" 00D " a2ch, ; (Homg, (A'(h), Le)).
1=0

In loc. cit., three potential candidates for this ¢-grading are proposed and conjectured to coincide:

« The inductive filtration F"? is defined inductively using the shift functor from Hm=-modules to Ham 4 4-
modules and the “flipping” isomorphism LS" >~ 5m,

m

o The algebraic filtration F® is defined by reshuffling weight spaces under the Euler field and orthogonal
complements of powers of the ideal a generated by non-constant symmetric polynomials under the
Dunkl form.

e The geometric filtration F#°°™ is defined as the perverse filtration on the cohomology of a Hitchin fiber
isomorphic to the compactified Jacobian of the planar singular curve y” = z".



1.2 The inductive filtration and the Hilbert scheme of points in C?

The inductive filtration F™™¢ originated from the concept of a “good filtration” in [ ], where the
authors establish S,-equivariant bigraded isomorphisms

(Lyy 1) 2 D(Hilbg (C*), O(k)) (2)
Ly, 1 = sign ® I'(Hilb{(C?),P ® O(k — 1)) (3)
confirming conjectures in | ]. Here Hilby (C?) is the punctual Hilbert scheme of n points on C? and

O(k), resp. P denotes the degree-k tautological line bundle, resp. Procesi bundle of rank n! on Hilbg (C?).
The gradings on the right hand side of (2) and (3) are induced by the action of (C*)? on C? by scaling. In
this setting, only the shift functor is needed to define the inductive filtration on L, 1. As proved in | ,

the g, t-character of the right hand side of (2) equals to the g, t-Catalan number:
ch,t((Lyy 1)) = chye(C(HilbG (C?), O(K))) = Crirr,n (4, 1). (4)
On the other hand, as a consequence of the rational Shuffle conjecture proved in [ ], one also has

Cha:O,q,t(HHH(Tnk+1,n)) = an+1,n(q, t)

These two equalities provide evidence of Conjecture 1.2 using the inductive filtration.

1.3 Algebraic and geometric filtrations and the compactified Jacobian

Let Cm denote the closure of the plane curve y™ = 2™ in P? and J= be the compactified Jacobian of Cm,
which parametrlzeb rank one torsion-free coherent sheaves on Cm of a fixed degree. On the C*- equlvarlant
cohomology of Jm one can define the perverse filtration P (See [ , 8.5.1]). Let H;_;(Jm ) denote the
specialization of HC*(J m) at 1. It is proved in loc. cit. using the global Springer theory and proved in
[ ] using the BFN Sprlnger theory that there are natural actions of the spherical Cherednik algebra
eHme on the associated graded gr”H;_,(Jm) so that gr” H}_;(Jm) 2 (Lm)®" as eHm e-representations.

On the other hand, consider the arc space Mm defined as the moduli space of maps ¢ : Pl — C’m of
degree 1 such that ¢(o0) = ooc and deg(o*(f) — f) < k—2for all f € C[t™,t"] of degree k. Here qb

the induced homomorphism C[C'm — co¢] — C[P* — 0o]. Then according to | , section GJ, C[Mm ] is
isomorphic to (L%)S“ as rings and is filtered by powers of its maximal ideal m = a».
Conjecture 1.3. | , Conjecture 1.1.7] For all i,j € 7, gri H* (Jm ) = gl 'CMm m ().
In the case of m = nk + 1 for k > 0, the main result of | | implies that
> dim(gr] HY (Jy 1))@t = Crgr1.n(q, qt°). (5)
,J

Comparison between (5) and (4) provides a numerical correlation between (H*(J, 1), P) and (L, 1)%», Find).

In this paper, we relate Fi"d and F?ls.

Conjecture 1.4. [ , Conjecture 4.12] On Lim when m > n for coprime m,n the algebraic filtration
coincides with the inductive filtration.

Theorem 1.5. (Theorem 3.16) Conjecture 1./ holds.

Because of its definition (see Section 3.2) one can only define F'"¢ on Lz when m > n. But F ind g
defined on (L%)S" for all positive integer m coprime to n, in which cases it follows from Theorem 1.5 that
Fnd coincides with Fale,

As suggested by the discussion above (and explained in [ , Proposition 6.2.3]), we obtain the following
as a corollary.

Theorem 1.6. When m =nk + 1 for k > 0, Conjecture 1.5 is true.



The method we use to prove Theorem 1.5 is induction on the powers of a. It is proved in | ]
that L= can be defined as the maximal quotient of C[h] such that the Dunkl form is nondegenerate. The
main theme of this paper is to show that the obstruction of doing induction exactly lies in the kernel of
the Dunkl form I=. We prove this statement by inspecting = using the residue description provided in
[ , , ]. By decomposing elements in L. into sums of products of symmetric polynomials
and “-harmonic polynomials” (Section 2.2), we transform the question into a linear algebra problem on
dimension counts of subspaces in the direct sums of copies of coinvariant algebras (Section 4.1, 4.2). The
solution to this linear algebra problem is derived from the appearance of certain distributive lattices (Section
4.3). In the case of m = 2n — 1, the cohomology of the Springer fiber at a minimal nilpotent element comes
into the picture (Section 4.3.1). The proof is highly combinatorial and it would be interesting to geometrize
it.

Acknowledgement: The author would like to thank Victor Ginzburg, Eugene Gorsky, Thomas Hameister,
Yixuan Li, Linus Setiabrata and Minh-Tam Trinh for interesting discussions and helpful feedback on the
draft.

2 Representations of the rational Cherednik algebra

2.1 Definitions

Definition 2.1. We define the rational Cherednik algebra H, associated to the Cartan b C gl,,, Weyl group
W =S, and parameter ¢ € C to be the C-algebra generated by b, H* and W with relations

(2,2 = [y,4] =0, wrw™' =w(z), wyw " =w(y)
ly,2] = x(y) = Y clag, x){ay, y)s
ses

\%
s’

where z,2’' € b, y,y’ € b, weW,ScCW is the set of stimple reflections and as, resp. «
coroot, associated to s.

is the root, resp.

Let b C b be a Cartan of sl,,. The rational Cherednik algebra H, associated to h with parameter ¢ can
be defined similarly.

Let Ereg =B\ Uses{as = 0} be the regular part of b and D(Hreg) be the ring of differential operators on
Hreg. We take z1,--- ,x, to be the standard basis of E* Define the Dunkl operators
(c) 7 <OLS, xz>
(.= 2 N 00T ),
Yi oz, CSEZS o (1—s)

(Below we may drop the superscript (¢) when there is no ambiguity.) H, can be realized as a subalgebra of
D(breg) X W generated by x;, y; for 1 <i <n and W.

Similarly, H. is generated by x1,-+- ,2, mod (z1 4+ -+ + &), Y1 — Y2, " yYn—1 — Yn and W.

Take the polynomial representation of H. given by C[h] = H. ®g(p)xw C. When ¢ = 2+ > 0, with m,n
coprime, this representation has a finite-dimensional irreducible quotient, usually denoted by L.

Theorem 2.2. (/ , Theorem 1.2]) When ¢ = ™ for positive integer m coprime to n, the only
irreducible finite-dimensional representation of H. is L.. Moreover, only when ¢ =" for integer m coprime
to n does H. have finite-dimensional representations.

On H. we have the Fourier transform defined by
Pe(xi) =i, Pelys) = —2i, Pe(w)=w (6)
which defines the Dunkl bilinear form

(= =)e : Cb] x Co] = C, (f,9)e = [Pc(f)9]li=0-



From the definition, we see that for any ¢, € Clb],

On the other hand, since wa;w™! = Ty (i) and wy,w = Yuw(iyfor any w € Sy, we also have

(w(e), w(¥))e = (¢,1)e- (8)
For generic ¢ including 0, (—, —). is non-degenerate. However, when ¢ = ™* > 0, with m,n coprime, (—, —).
has a nonzero kernel I. and the resulting quotient C[h]/I. is exactly isomorphic to L. (| , Proposition

2.34)).

Example 2.3. When ¢ = £, let s = (12). Then y; — y2 = — —2c2=5 and (11 — y2)((21 — 22)*) =

2 r1—I2

20c(wy — x2)"7 L. As a result x = (r1 — 22)%) and dimL; = k.

Under the W-action, L. decomposes into isotypic components

L. = @ eaLm

o€lrrepW
where e,L. = o ® Homy (0,L.). In particular, for e = L3 owand e = L3 o (—1)sen@y,
eL. = eyivLe while e_L, = eggnL.. For any two subspaces U, V of C[h] or L., we write U L. V when U
and V are orthogonal with respect to (—, —)..
Lemma 2.4. e L. L. e, L. if 0 # o'.
Proof. Tt is a consequence of the property (8) which says that (—, —). is W-invariant. O

2.2 c-Harmonic polynomials

From now on we will assume c satisfies the assumption in Theorem 2.2. Inside C[h], take the ideal
a:= (C[hY). Let & := [[;;(zi—z;) denote the Vandermonde determinant. Define the space of c-Harmonic
polynomials to be H. := Cly1 — Y2, -+ -, Yn—1 — Yn]O.

Lemma 2.5. For non-negative by, by, if > o 5b; = ”(n;l) and {ba, -+ ,bp} # {1,2,--- ;n — 1}, then
b2 b3 bng —
Y2 Y3 Yn

Proof. For any o € W,

YRy = o U 0) = ooy Utay gy (C1)E0)

because for degree reasons y22 yga <.y’ § is a constant. From this we deduce

Y (Lo (ygrys )8 = nlystyst -y, (9)
oeW

On the other hand, the polynomial __(—1)%8%)q (zb2zb ... 20n) is skew-symmetric of degree the same
as 0 and hence has to equal to Ad for some constant A because of

C[h]=" = oC[]. (10)

However, § explands into

Z (_1)sign(0)xa(2)m§(3) .. xz(:ll) (11)
oceW

since {ba, -+ ,bn} # {1,2,--- ,n—1}, by comparing the degrees of terms in § and EU(—l)Sig“(”)U(x?mgB coegln
we conclude that A = 0 and the lemma follows. O



Similar to the classical result C[h] = a &0 Hq (| , 6.3]), there is the following analogue:
Proposition 2.6. When c = = > 1 with (m,n) = 1, we have that C[b] = a ® H. with al H..

Proof. Since the image of § under the action of any symmetric polynomial in y;’s is still scew-symmetric,
because of (10) the image has to be 0 and so H. L. a. On the other hand, since C[h]/a = C[W], it is
sufficient to prove that dim H. = n!.

We first claim that yay3 - - y? 1§ # 0.

When ¢ > 1 the image of ¢ is nonzero along the projection C[h] — L, as (] , 4.3])

el =e_L, ZelL.1 # 0.

This implies that there is a polynomial ¢ such that (d,¢). # 0. But by Lemma 2.4, we may assume
¢ € e_L, = deL... For degree reasons, we must have that ¢ is a nonzero multiple of §. As a result, we have
(6,0)c # 0, which by (11) expands to

(Z (‘USign(U)ya(z)yi(s) : y:@l))fs (12)
ceW

By (9), (12) equals to nlyay3 - - y2 16 # 0 and the claim follows.
It remains to show that the elements y32ys® ... y%"J, satisfying 0 < a; < ¢ — 1, which are nonzero from
the discussion above, are linearly independent.
Suppose otherwise, i.e.
> aya, USPYSS a8 =0,

Zai:N

where 0 < a; <i—land N € Z>q. Let (Aq, ..., A,) be the maximal element inside the set {(a1,...,an—1)| D, a; =
N, 0 < a; <i—1} under the lexicographical order!

Then
s Y Ay N g USRS Y6 = 0.
Z a¢:N
As a consequence of Lemma 2.5
—Ay 2-A —1- -
0=y My My A Ty, USRS YO = Qe Y205 Y,
E ai:N

which was proved to be nonzero above. This yields a contradiction. Therefore, the elements y52ys® ... y%"6
satisfying 0 < a; < ¢ — 1 are linearly independent and the lemma holds. O

In view of the proof, we actually have that Proposition 2.6 holds whenever § ¢ I..

a2 a3

Lemma 2.7. The polynomials ¢a, ... q, = 5225 ... 28, satisfying 0 < a; < i —1 form a basis of C[h]/a.
Moreover, any ¢ € C[h] can be uniquely expressed as ¢ = > hyb; with h; € H. and ; € C[H]W. In other
words, C[h] = H..- C[H]"W.

Proof. Tt follows from Lemma 2.6 and the fact that C[h] is the Galois extension of C[h]"" with respect to the
polynomial [];", (z — x;) with basis given by ¢q, ... a,, 0 < a; <i—1. O

Corollary 2.8. I.NH. = {0} when c> 1.

Proof. As in the proof of Lemma 2.6, (y%_a’"yg_“3 cooynTiTan) (y22yss | y%n)§ is a nonzero constant. More-
over, if ¢ € I, then (y; — yiy+1)¢ € I. for any 1 <i <n — 1 because of (7). Since nonzero constants are not

contained in I, we conclude that y52ys® ...y 6 ¢ I, for all 0 < a; < i — 1 and the corollary follows. O
lie. for (a1,...,an—1) and (af,...,al,_4), if for some 1 < i < n—1, a1 = a, -+ ,a; = a and a;41 > a;+1 then
(a1,.. . an—1) > (al,...,al,_;).



To avoid extra notations, below we will simply use a and H,. to denote their images under C[h] — L,
when there is no ambiguity. That is to say, we have a direct sum decomposition L, = a ® H. and H, = ate,
where L. denotes orthogonal complement with respect to (—, —)e.

There is a W-action on H,. by permuting the y;’s. Under this action, H,. is isomorphic to the regular
representation of W. Decompose H. = @, HY so that HI = o @ Homw (0, He).

Corollary 2.9. e,L. = H7 - eL..

Proof. Clearly HY -eL. C e,L.. Moreover, it follows from Lemma 2.7 that L, = H.-eL. = (@, HZ) - eL. =
@D, HS - eL. and hence the opposite inclusion follows. O

3 The power filtration and the inductive filtration

3.1 The algebraic filtration and the power filtration
3.1.1 The power filtration

n

Let pi :== >0, x; be the power sum symmetric polynomial of degree i. Then C[h]™" = C[p1,pa, . .., pnl/(p1)-
The following three elements in H. form an sly-triple

1 1 1
€= P2 %p% ~on Z;(% —x;)?, f=—Pc(e) = —— Kj(yi — ;)%

h = éZ(xiyi + yixi) — i (P1®@c(p1) + Pelp1)p1) = % ; ((% —zi)(yi — y5) + (i — y5) (i — Ij))

[h,e] =2e, [h,f]=-2f, [e,f]=h

iei (@i — 2) (i — yy) — p where p = ==L,

Remark 3.2. u is the Milnor number of the singular curve {z™ = y"}.

Lemma 3.1. On L., h acts by %Z

Proof. We compute that

b= 3 (G0 = )01 = ) = o1 = ) - )

:% :J (2(331- — ) (yi — ;) +2|S| — ; gdas,xi — TNy — yjﬂ!)é’)
A (e ()4 (5 9) )

Here S is the set consisting of all reflections with |S| = (3) and (5) — (";2) = 2n — 3 is the number of oy

such that (as,2; — x;) # 0. Moreover, (as,z; — z;) equals to 2 when oy = z; — z; and equals to £1 when
s = (ik) or (jk) for some k # i, j. Therefore

h= % 2 (2(% —x;)(yi —yy) + (2[S| - 2nc§s)),

Since ) g 5 is in the center of the group algebra of W, it acts by a scalar on L., which is [S|. So finally

h= 23 (o= =)+ (0= n0l81) = = 3 (= )l = )~ (1= nells]).

i<j 1<j

We conclude the lemma by

(ne—1)|5] = —(m_lé(”_l) — . 0



The left action of h gives a decomposition of L. into weight spaces €, L.(k) where L.(k) = {v € L.|hv =
kv}. As a corollary of Lemma 3.1, h- 1 = —pu. Therefore 1 is a eigenvector vector of minimal lowest weight
—p and e* is a eigenvector of maximal highest weight pu.

Note that [e — f, 2] = [-f, 2] = y, and [e — f,y] = —x. Also, because the action of (ad(e), ad(f), ad(h))
on H, is locally finite and integrable, | , Remark after 3.8] tells us that the Fourier transform (6) can
also be expressed by

d.=Ad(ez ) . H, - H,.. (13)
This allows us to define

T,:L.— L., ¢rerey (14)
where €% (©=f) acts by left action. The lemma below gives a concrete characterization of ®..

Lemma 3.3. Suppose 0 # ¢ € L.(k). If k <0, then D.(9) is_a monzero multiple of e *p; if k >0, then
®.(¢) is a nonzero multiple of £¥¢. In particular, we have that ®.(1) is a nonzero multiple of e*.

Proof. Since ®.(e) = —f and ®.(f) = —e, we know that ®. preserves (e, f, h)-subrepresentations of L.. On
the other hand, because ®.(h) = —h, for any ¢ € L. we have h®.(¢) = —®.h(¢). As a result ®.(L.(k)) =
Le(—k). Finally, notice that when ¢ € L.(k) with k < 0, it follows that 0 # e *¢ € L.(—k) N (e, f, h)¢,
which is one-dimensional. Hence e ¢ = C®.(¢) for some nonzero constant C. The argument is similar for

the case when k > 0. O
The algebraic filtration F&" in [ , Definition 4.6] is defined by
F¥ (Le) = () (@) (k).
2j—k>i

Below we use the Fourier transform to reconstruct F21".

Definition 3.4. For all ¢ > 0, using (1/) the power filtration on L, is defined by

F{(Le) = @[(a™ )] = @ [(a" 1) <]el.
We let (C[h]}/v be the sub vector space spanned by p; pi, ---p;; for 2 < dy,--- ,i; < n and (C[b]‘évj =
Iy

Lemma 3.5. ¢ € (a')*c C L. if and only if for all ¢» € C[hlV, @.(¢)¢p = 0.

Proof. “<="” is clear. To show “=", assume ¢ € (a’)*< but ®.(¢)¢ # 0 for some ¢» € C[h]'. Then since
(=, —)c is non-degenerate on L., there exists some £ € L. so that (§,®.(¢)d). = (¥, d). # 0 is a nonzero
constant. This contradicts the assumption that ¢ € (a?)*< as &b € a’. O

Lemma 3.6. For ¢ € [(a'*)><]W (y; — yir1)¢ € (a¥)Le for all .

Proof. Take ¢ € C[p]}V. Then ®.(¢))¢ is symmetric and also lies in atc = H.. Therefore ®.(1)¢ is a
constant and ®.(¢)(y; — yi+1)¢ = 0. Now apply the last lemma. O
3.1.2 The Kazhdan filtration

Definition 3.7. [ , 8.2] The Kazhdan filtration K¥' on a vector space V associated to an ascending
Z-filtration F and a Z-grading V = ®rezV (k) is

Kf (V)= Y F(V)k).

2j+k<i



Definition 3.8. Define the algebraic filtration F*& on L. to be the Kazhdan filtration associated to F® and
the h-grading, i.e.

F' = )" B((a?t)e)(k).

2j+k<i
Lemma 3.9. Fale — pals’
Proof. For fixed ¢ and k we have
FYk) = Y (@) o) (k) = Bo((al T 1)) (),
2j+k<i
F () = (D2 (@) (k) = (@ 5 )b h).
k<2j—i

i—k41 itk

Take P € ® (a2 1)Le] a polynomial in y1 — ya,...,Yn_1 — yn of degree p — k. Take ¢ € al 51 of
degree p + k so that ¢ € L.(k). Then

(¢, Pe!)e = (Pc(P), Pc(d)e’)..

i—k+1

As a result F8(k) = Fialg/(k:) if and only if ®,(al “F1)(=k) = al == 1(—k). After change of variables,
this latter condition is equivalent to ®.(a%)(v) = a®*?(v).

Now by Lemma 3.3, ®.(a%)(v) = ®.(a%(—v)), which equals to e’(a*(—v)) = (e’a*)(v) when v > 0 and
equals to £~V (a%(—v)) = (f~Va")(v) when v < 0. Since (ea")(v) and £~V (a%(—v)) = (fa*)(v) both lie in
a“*¥(v), we conclude

B (a")(v) C a"(k),

from which we also have B o
D, (a"F(v)) = (B(a"T"))(—v) C a*(—v).

Now applying ®. gives us a%"¥(v) C ®.(a%(—v)) = ®.(a%)(v). Therefore ®.(a*)(v) = a*"¥(v) and F2l& =
Fole’, m

3.2 The inductive filtration

We have the following isomorphisms

when m,n >1, eLm ZeL~ (] , 8.2]) (15)
when ¢ > 1, L.~ Hcee_ ®en, je€le_1 (] , Theorem 1.6]) (16)

To view Hee_ as a right eH._je-module, one uses the identification e_H.e_ = deH._jed ! (I ,
Proposition 4.1]). The isomorphism (16) implies an embedding eL._; < eL.: em — e_ ® em and an
isomorphism

e_L.=deL._1 (17)

when ¢ > 1. Using (15) and (16), we can define two inductive filtrations on L. when ¢ > 1 and on eL, when
¢ > 0, denoted by F*® and F"? respectively.
First we give a partial order on the positive rational numbers in the following way: for coprime pairs
(m,n)
m m+n m m

; if n < m, then — < —. (18)
n n non

We can then use the Euclidean algorithm to go from ¢ = 7* to % for some integer n’ > 1 through

a chain of rational numbers decreasing under the order (Qsg,<). For example, if ¢ = 12, then we have

5
13 3 5 2 3 1
5757373737 3



Definition 3.10. [ , Theorem 4.1] For the base case whenm = 1, F'"d and Find” gre defined trivially
on L.:
0=F 1eL1 CFOeLl—eLl—Ll.

where » = ind or ind’. Next F™ qnd Fnd" gre defined inductively under the order (Qso, <) using the
isomorphisms (15) and (16).

o When the filtration on the right hand side of (16) is the tensor product filtration where H. is endowed
with the order filtration F°% such that degy = 1 and degx = degw = 0 we get F™d,

e When the filtration on the right hand side of (16) is the tensor product filtration where H, is endowed
with the Bernstein filtration FB™ such that degy = degx = 1 and degw = 0 we obtain F™? .

Lemma 3.11. F* s the Kazhdan filtration associated to F'™Y and the h-grading.

Proof. It is sufficient to show that the Bernstein filtration FB™ on D(Hrcg) (containing H.) defined by
deg(x;) = deg(dy;) = 1 is the Kazhdan filtration associated to the the h-grading and the order filtration
Feord defined by deg(:rl) =0 and deg(0,,) = 1.

By definition, FP™(D(h,,,)) = Z\a|<z Ogmgag with |a| = >, a; whose associated Kazhdan filtration is

Kiord Ereg Z Z O*mg :? k :

2 +k<i || <j

Now note that the h-grading of z; is 1 while that of 0,, is —1. Therefore

KM (DOeg) = D, D bapr’0f = Y Lapa0f.

2j+18l— e <i || <j [Bl+|e|<i
where £, 5 € C. This is exactly F2°™ and the lemma is proved. O
Corollary 3.12. The equality '8 = Find g equivalent to the equality F® = F»d,
Lemma 3.13. (1) f- F{L. C I} L., forc>0
(2) £ FdeL, C F3%eL, for ¢ >0 and f - L. C F2{L. for ¢ > 1.
(8) e- FfL, C F* L, forc>0
(4) e- FindeL, C Fin9eL. for ¢ >0 and e - F/"IL. C F/"4L, for ¢ > 1.
(5) Assume v is a highest weight vector with respect to the sly triple {e,f, h} andv € Fi“dL \Find L.. Then
fori >0 such that fiv # 0, we have fiv € FJ”}jL \ “ﬁ 1Le. The same holds for FCl in place Fnd,

Proof. We will only prove (1) and (2). (3) and (4) can be shown by an analogous argument. (5) follows from
(1)-(4).
By definition, (1) is to say f - ®.((a’*1)1e) C ®.((a’*2)L<), or equivalently e - (a'*!)Le C (a?+2)Le. By
Lemma 3.5 and equatlon (7): (zi — ), ) = (P, (yi — y;)¥)e, it suffices to show f - (C[h]l_‘_2 - (C[f)]>2+1
Recall that £ = —5-3>", (i — y;)%. We write Vf= ({%_ - gmf_ )i<; and use [ , Corollary 5.3] to

2n

compute that for 2 < jq,-- - jie <n
—2nf - (pj1 o 'pji+2) = (_an . pjl)pj2 o Pigo + et PjiPjs - (_an ' pji+2)
+ (ijl . ijz) o Pigo +pj1 T (iji . ijH-z)

which does lie in C[h]>z+1

Next, we prove (2) by induction. Trivially, part (2) of the lemma holds for eL /,, for all n > 1. Now for
¢ = m/n where m > 1 we assume the statement holds for all (m’,n’) < (m,n). For eL. we may assume
¢ > 1 otherwise we take el . given axiom (1) for F ind " Thus we only need to prove the statement for L.
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Take > & @i € Hede— ®q_m,0_ eLlic—1 so that & € F,H.de_ and n;, € Fé“deLc,l and a+ 0 <i. Apply
®.(p2) and we obtain

D Pe(p2)i @i =D [Pe(p2), &) @ i + & @ De(pa)n;.

Here [®.(p2),&] € Fat1 and ®.(p2)n; € F'Y) by the inductive hypothesis. Hence (2) of the lemma follows.
O

Corollary 3.14. (1) e(F™8L,) c F**L, and e(F"'L,) ¢ Find'L,.
alg al ind’ ind’

(2) £(F"®L,.) C F*®L. and £(F"VL,) ¢ F"'L,.

(3) EC(Fialch) = Fialch and 6c(l:‘imdll_zc) = Fiind/Lc.

(4) Assume v is a highest weight vector under the sly triple {e,f,h} and v € F}“d/LC \ F}’idl/Lc, Then for
i >0 such that fiv # 0, fiv € Fjivnd/LC \ Fjiri‘il/Lc. The same holds for F€ in place F™¥

Proof. Notice that e - L.(k) C L.(k 4+ 2) while f - L, C L.(k — 2). Hence (1) and (2) of the corollary follow
from Lemma 3.13 and the fact that F*!# is the Kazhdan filtrations associated to F'® and F'"d is the Kazhdan
filtrations associated to Fnd. (3) follows from (1) and (2) plus Lemma 3.3. (4) follows from (1),(2) and

O

(3).

3.3 Some first relations between F°® and Fd

It is discussed in | , Theorem 4.8] that F*# is compatible with (15) and (17). It is not hard to
see that F'* is also compatible with (15) and (17): According to [ , 8.2] the isomorphism eLm = el n
can be defined by (up to scalars)

pi(xla s 7xn) — pi(5'317 cees mm)a

which is clearly a filtered homomorphism under F'¢. Also, the following lemma shows that F'® is compatible
with (17):

Lemma 3.15. § ((ai)LC)W C (a¥)t and ®.(6) ((cﬂ")l)Sign C (a?)*.

Proof. We will only show that & ((ai)L)W C (a®)*t. The proof of the other statement is similar. Assume there

exists ¢ € C[h]!V and ¢ € ((ai)J—)W such that ®.(¢)(d1) # 0. Then since ®.(¢)(5) € C[h]sis» = §C[p]",
which intersects H, = a* only at {0}, there exists some symmetric polynomial 7 (possibly constant) satisfying
D.(n)P.(p)(0¢)) = §. From the proof of Lemma 2.6, we see that ®.(0)d # 0. As a result, .(dng)(dy) is a

nonzero constant. As a result,

0 7& (‘I’c(5)(5¢), n¢>c = (61/}7 6n¢)c = (55 5)0(1/),677)071 (19)
where the second identity is proved in | , Corollary 4.5]. This contradicts the assumption that
) € (a?)Le. Therefore ®.(4)(01) # 0 and the first statement follows from Lemma 3.5. O

Our ultimate goal is to show

Theorem 3.16. When ¢ > 1, for all i > 0, F/"L. = FfL,.
The containment in one direction is immediate:

Lemma 3.17. When ¢ > 1, F"L, C FfL,

Proof. We do induction on ¢ with respect to the same order as in the proof of Lemma 3.13. Assume
FinL. C FfLy holds for all ¢ < ¢ under the order (18). Take Yok @n, € Hede— ®e_m.e_ €Le—1 so that
& € FYHcde and ny € Fj*eL.— and a + 3 <. We shall show (& @ nx) Lo ®c(a’).
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By Lemma 3.5, it is sufficient to show that pj,,, -~ pj, (§ @ i) = 0 for 2 < ji, -+ ji41 < n. For this, we
compute that

DPjii1Ph (gk & nk)
=Djir1 P [Pj1r Ek) @ M + iy Pl @D e = =+
=[Pjiiis [ 3 Piacrs Pias Piacss [ [P &k - T @ e
+ iji+1> [ 7[pja+1’ [pja7 Lp.ja717 [[pjzvgk]] Q Py Mk + -+
+ & @ Pjiy  Dju ke
Notice that [pj,., [+ [Pjasis> Pjas Pja—is [ Pjesr k) -] € Fa—ige—1 when o —i + £ —1 > 0 and equals to
0 otherwise.

On the other hand, by the induction hypothesis, n; L @c(aﬂ“)ac,l. As a result, pj, - -pjm €
F g_eeLc,l when ¢ < 3 and equals to 0 otherwise.

Since a4 8 < i, we see that either [pj, .\ [ [Pjusrs [Pins Pjars [ [Pjesi> &kl -] =001 pj, - -pjmr =0
and the lemma follows. O
This gives a different proof of | , Theorem 4.8]. To show the opposite containment, our idea is

to do induction on 7. For the base case:
Lemma 3.18. When ¢ > 1, Fi™L, = F§L,.

Proof. Tt suffices to show Fi{"L. D F§L.. Under the isomorphism (16),

F(;ch Lcmr;a 20 6c(alc) = 65(7'Lc) = <I)c((c[yl — Y2, 3 Yn—1 — yn]é)eu = C[!L‘l, e 7*7:77,](1)5(5)9“

is mapped to

n(n—1)

Im((C[:cl, ceesxple- ®@efT T 27 Heel ®en, e eLc_l)
C Im(F§"Y(Hee_) ® Fi™eLe_1 — Heeo ®enr. e €Le—1) = F™Le. O

This recovers | , Corollary 4.11] from a different point of view.

Example 3.19. (See Figure 1) Consider L% whose dimension is 43~1 = 16. We compute F*, Find Falg op
Li. In this case, He = HEW @ (HSH)P2 @ Hslen, Inside, (HY)P? = (€1,&) @ (ay, az) where & = z; — Ti41
and a; = (y; — yir1)8. By Lemma 3.18, we have Fi*L, = FfL. = (®.(1), ®.(&), (i), @.(8)). Since
D, (1), @.(&), Pe(cvi), @.(0) are all highest weight vectors under the sly triple {e,f, h}, Lemma 3.1 tells us
that £(v) € F/"IL. N FPL, for any v € F§Le.

It remains to determine where ps belongs to. Since p3 € (a®)1c and is not c-harmonic, ®.(ps3) € F}Le.
On the other hand, by Lemma 5.1, p3 = %Z?:l(wi — xi11)(Yi — Yiv1)ps. Because (y; — yit1)ps € He, we

conclude that ®.(ps) = § 37—, (s — yi+1)Pe((ys — vir1)ps) € FML.

3.3.1 Orthogonal lifts and the orthogonal complement of IV,

The product H. - C[h]¥, denotes the vector space generated by all hi with h € H,. and ¢ € C[h]%.. Since
H. - C[h]Y, = C[h]/a**?, there is a unique hyp € L. so that hp € (a®*1)Le and hyp = hp modulo a*1. We
will use this notation frequently from now on. In the sequel, all polynomials will be homogeneous.

Write (ctj)jL_“1 = (a/)*< Na/~1. Then when j # j’

. -/
(aJ—H)jLC 1, (aj +1)‘ﬁc'

Inside (a/71) JL ¢, consider the subspace

Sj = (hp € (/)7 e|h € Heop € IV). (20)
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Figure 1: Filtrations from example 3.19 where the numbers at the bottom indicate h-weights

We can go through the Gram-Schmidt process to obtain an orthogonal basis under the nondegenerate form
(= —)e—1 on ((Ie—q)te N (aj“'l)j‘c)w (mod I..), which we denote by {{b\} Also, we take an orthogonal basis
{E} of H, such that h = P§ with P € Cly1 — y2,- -y Yn—1 — Yn] depending on h.

Define S 1, = (hi) € (/)7 |h € He, b € (1)),

Lemma 3.20. For any integer j > 0, suppose F}“deLc,l = FjeLc_1. Then 6C(Sj,LC) C F}“dLC.

Proof. For orthogonal basis elements {b\ of ((Ic_l)Lc N (aj+1)j‘c)w and h = P§ of ‘H. chosen as above, we
claim the following

(a) P(63)) € (a9 +1)Le.

(b) B.(P(6v)) € FIML.

(¢) For any pair (f?’, 12’), (13(512)7 f?’vf’)c £ 0 if and only if &/ = h and 3 = 9.

Here (a) holds because 59 € (a*1)Le by Lemma 3.15 and so does P(59).

For (b), by Lemma 3.3, ®.(6¢)) = ®.(0¢)3. for some nonzero highest weight vector 3. in L., which
is mapped to ®._1(1))B.—1 for some nonzero highest weight vector S._; in L._; under the isomorphism
e_L. = deL._1. The element ®._1(¢))B._1 lies in F;‘eLc,l and hence belongs to F]i-“ch,l by the assumption
of the lemma. Therefore so does ®.(P(51)) = ®.(P)®.(5).

To show (c), notice that ®.(59")(dv) = (5,0)c(¢’,¢)c—1 # 0 if and only if ¢p = ¢p’. Therefore ®.(v)")(d9)) #
0 if and only if ¥ = ¢/, in which case

(P(60), ") = (PB()(60), h)e = (0, )1 (P(8), 1) = (b, 1)1 (B 1) o # 0 iff o = I

As a consequence, {®.(P(51)))} forms a new basis of ®.(S;,1,) that is contained in F™L.. Hence the
lemma follows. O

Lemma 3.21. §; |, = (Sj)h‘ N (C‘jH)j_c'

Proof. By Lemma 2.7, §; 1, and S; together span (aj“‘l)j‘c. Therefore we only need to show S; 1, C
(Sj)ten (ajﬂ)jlc. To do so, by the proof of Lemma 3.20, it suffices to show that (ﬁ(ézﬂ),@)c = 0 for all
ho € (a7t1) < such that h € H and ¢ € I}V .

13



Because of Lemma 2.1, we have that (P(61)), ho)e = (8¢, ®.(P)ho). is nonzero if and only if there exists
some ¢° € C[h]" so that

(00,66%)c = (300, 2e(P)ho)e.
By Lemma 2.4, §¢° € 1587, Moreover, note that I8 = 61| and hence ¢° € I,_;. We conclude the lemma
by
(69, @c(P)hg)ec = (6,6)c (1), ¢%)e—1 = 0. O

3.3.2 Criteria for induction

Lemma 3.20 tells us that we can show Fi"d = F® on Sj,1. by induction on c. As for §;, with doing
induction on indexes of the filtrations in question, we prove Proposition 3.23.

Lemma 3.22. (i) The quotient map U;S; 1, — Lc/(IXY,) is an isomorphism.

(i3) Tm(F§* (Hee_) ®c eLe—1 — Hee— ®en, je €Le—1 =2 Le) = L./ (IV,).
Proof. (i) follows directly from the definition of S; ;.. To see (ii), note that (Lc/(IgKl))W =eL. /I, =
eL._; and so by Lemma 2.7,

Lo/(IY,) = He - (Le/ ()™
Moreover, F§™(Hee_) & C[zy,- -+ ,x,]. It remains to notice that
Clz1, -+ yxn) - €leer = (Clzy, -+ ,x,]/a) - ele—1 = He - LZV/ICVKl. O

Proposition 3.23. For j > 1, suppose F;-rjdch = I} Lc. Then the following statements are equivalent

(i) For any nonzero ¢ € S; and k € [1,n — 1] such that (yx — ye+1)¥ ¢ (af)re, ®.(¥) = 0.

(ii) For any nonzero ¢ € S; such that (yx — yx+1)¢ € o/ for all k € [1,n — 1], ®.(¢) = 0.

(iii) Be(S; N (s wu(a)) ) ™) = 0.
(iv) F}“de = F}S;.
Proof. (i) = (ii) is obvious.
(ii) < (iii): The property (7) (@i —zj)p,0)e = (¢, (yi — y;)¥). implies that ¢ € (22:1 xk(aj)J-”)J'C is

equivalent to (yr — yrt1)¢ Le (). o
(iii) = (i): First of all, note that ®.(>_,_, xx(a?)1<) is a subspace of ®.((a/*1)Le). Let

pre Te((@ o) = B (Y ax(ad) )
k=1

denote the orthogonal projection. Then because of (7), (i) is equivalent to the condition that ¥ # pr(v).
Take ¢ = 1) — pr(y). Then ¢ lies in ((3p_, zx(a’)Le)Le) N (a? 1)L, which equals to 0 by assumption (i7).

(iv) = (iii): Take ¢ € S; such that ®.(¢) € FfL. = Fi"L, with j > 0. By the definition of F'*4, ®.(¢) =
Za+,@:j b0 ® g where ¢, € FS*%Hee_ and ¢ € Fé“deLc_l. Since the image of ¢ in L./(I%V;) is 0, given
Lemma 3.22, we may assume a > 0. As a result, ®.(¢) can be written in the form of >, (yx — yr+1)Pc(dr)
for some @ (¢) € F;™} which equals to F*; by our assumption. Therefore ®.(¢) € ®.(>_;_; zr(a?) ).

(i) = (iv): When ®.(¢) is a lowest weight vector, which lies F}¢, we have already shown ¢ € Fi* by
Lemma 3.13. Hence below we assume ®.(v) is of weight v > —pu.

Then from hy = v and Lemma 3.1 we deduce

> (@i —x)(yi — yi)e = n(v+ p).
i<j
Therefore

Belh) = ———— (1 — )Pl (i — 1)), (21)
n(v + p)

By assumption, ®.((yi—y;)¥) € Ff' L. = Fj"{ L. and hence ®.() € F}™L,. Thus (iv) = (i) is proved. [
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When ¢ € eL., we have (yx — yr+1)¥ € (a/)*c by Lemma 3.6. As a consequence of Proposition 3.23, to
show F'"d = % we only need to consider elements in the form of Y ht) where ¢ € C[h]" and h € H,. is not
a constant. o

Proposition 3.23 also suggests that: to do induction, it is sufficient to show (yr — yr41)¥ € (a/)*< for all
k if 1 € (a?*1)Le. This is our goal in the next section.

4 The kernel of the Dunkl form and the coinvariant algebra

4.1 The kernel of the Dunkl form

Throughout we assume ¢ = * > 1 for positive integer m coprime to n. Define u; to be the elementary

symmetric polynomials satisfying []; (1 — 2;2) = Y u;2" (put u; = 0). Let vi(c) be the polynomials such
that the formal Taylor expansion of the following equation holds:

(Z uiz')¢ = Z UEC)zi.

Fori=1,...,n, define

pi= ot (1= Tl =) = S5
k=1 j=0

n—1

(1—ap2) | = (—1)/ Z Ty - xy vffl_j).
by <o <lj,layee js#i

=

= Coef,m H(l —x12)

1#£i k

1

<.
Il
o

Lemma 4.1. For k <n, one has

k k—2 _ k
P = (DY
J1< - <Jr,JeFi

K

k_ k
As a consequence, x; = (—1) g x4, - a5, mod a.

J1<-<Jr,jeFi

k

Proof. We do induction on k. When k = 1, it follows from x1 + 22 + - -+ + z,, € a. When k > 1, assume the
lemma is proved for integers less than k. Then by the induction hypothesis

k k—1 k—3
zi =z; | (—1) ) Tjy oy — (@ Cug e+ ug—)
1< <Jr—1,JeF#0

k—1 k—2
=(=1) > Tixj, ey, — (27 Tug 4 L)
J1<-<Jr—1,JeFt

=DM = Y wg g, | = @ e ziue)
J1<s<Jr,JeF#i

=(-D* > wywg = (@ Pue e ) [

J1<<Jk,JeFi
Therefore
n—1
o=l +al Pug o ug)oy ) (22)
§=0
According to | , (4.2)], the summand Uﬁﬁfl) in f; can be expressed by

v = (2(c—1) = (m =20 Yus + -+ (n—1)(c—1) = (m —n— 1)olTY u, .
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c—1
Suppose kn < m < (k+ 1)n. Then vfnil)

l=0,---,m—nk—1. Hence

€df forl = m—nk,---,n—1, and ”fri:zl) € a**t! when

n—1 ]
Z xivfﬁi;) mod a* !, (23)
j=m—nk
Theorem 4.2. [ , Chapter 5][ , Proposition 3.1][ , Theorem 4.3] We have that

(1) 1. = >, C[blfi and >, Cf; form the standard permutation representation of S, .
(”) erfl = m:-l 5,2,_[ - ZJ 1 »S,CLZHPZ e

(iii) IV = (v fnl_l,n- ,vfﬁl_n_l) and v,(f) eIV fork>m+n—1.

Given the expression (22) and (iii) of Theorem 4.2, we see that I is contained in the ideal generated by
..

Remark 4.3. The generators vfs;ll)ﬂ, s 7(72 P of IV, form a regular sequence As a result, dim(L./(I)V})) =

(m—n+1)---(m—1)=dimH,. - dim(eL._1), whzch implies that L./ (I 1) 2 H. ®c eLq_1.

4.2 Equality on F}

In this section and the next section, we will show Fi*d = Ff. In the process we will acquire all the
ingredients needed for proving F de F7 for j > 1.

Take a nonzero polynomial ¢ € (a?)*c N a. Assume qb = >, hxpr, mod a? for hy, € H.. By Lemma 3.20
and 3.21, we may assume, in addition, py € IW1 mod a?. From Theorem 4.2, we know that IV, mod a? is

generated by vfﬁlnﬂ, ceey v,(f). Therefore to have IV | # 0 mod a2, the integer m has to satisfy n < m < 2n,

We will assume n < m < 2n for the rest of Section 4.2 and Section 4.3.

Now to show Find = Flalg, by Lemma 3.18, Lemma 3.20 and Proposition 3.23, we only need to show that
if (a lift of) ¢ :=>__ .1 hepe lying in C[p] N (1Y) is such that (y; — yi11)¢ € a for all i, then ¢ € I.
Here hp—nt1,- -+, hn € He.

We know that any element in I, has the form

Do difi= 6w, (24)
i=1 i=1  j=0

Replacing f; fori =1,...,n by

m—n, (c—1)

fiza! vy, g+ a] T oy mod a?
and v; for j=m—-n+1,...,n by
v’ =cu; mod a?
we have the further expansion

n n

quzfl =(c—1) Z Z xzn*juj mod a?. (25)

1=1 j=m—n-+1

Let R := C[h]/a be the coinvariant algebra. Using row vector multiplication, we have two linear maps

Am—non—1 B —non—
n m—n,n 2n—m m—n,n—1 n
R Lol ® Zmomntl ® (26)
defined by the following matrices
n—1 n—2 m—n m—n m—n m—n
xl 1 xl 2 PRI xl :I/‘l 1 .’11'2 1 - e :L'n
) I S R I e
m—n.n—1 = N - (27)
n—1 n—2 m—n n—1 n—1 n—1
xn xn DEEY xn ‘rl m‘2 DY Z‘n

We will simply write A := Ay,—pn—1, B := Bym—n n—1 when there is no ambiguity.
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Lemma 4.4. (a) > . hepy € I holds if and only if (m —n+ 1)hy—ni1,--- ,nhy,) € Im(A).

(b) (i = Yit1) Do pem—ny1 Mk € @ holds for alli if and only if ((m —n 4 1)Rm_py1,- - ,nhy) € Ker(B).

Proof. by Newton’s identity py = kuj mod a2, for k =2,--- ,n. The equation

Z hepr = Z khruy = Z¢ifi =(c—-1) Z o; Zx;nfkkuk =(c—1) Z(Z qbix?“k)uk mod a?.
i=1 k k=1

then implies ((m —n + 1)hm—nt1, -+ ,nhyn) = (¢ — 1)(¢1 - - - ) A. This proves (a).
Because py, is symmetric, by | , Corollary 5.3] we have that

(Yi — Yir1) (hapr) = ((Yi — Yir1)hw)pr + ha((Yi — Yiv1)pr)-

The element (y; — yi+1) Y x heys is in a if and only if Y, hx((yi — yi+1)pe) is in a. The latter element is

equal to >, khy(zF=t — xf;ll), because y; — y;_1 acts on symmetric polynomials by 8‘; — 83“ .
This can be translated to
x'liﬂ—n x;n—n x;n—n mgb—n le__ln _ xZL—TL
xmfn+1 xmfnJrl m—n—+1 m—n+1 xmfnJrl _ il'm_n+1
((m=—n4+Dhm—ni1, - ,nhy) 2 2 3 n-1 n =0 mod a
T S S o) -
We add in a new column to the matrix in the last equation to define
et R TT  e (R
“n+1 —n+1 —n+1 -
B = ay - 5" e x:':fanr A
-1 -1 -1 _
ayT -y e apTy—ap! Pn1
As the last column in B’ is 0 mod a, ((m — n 4+ D)hm—nt1, - ,nhy)B = 0 mod a is equivalent to
((m —n+ Dhy—pt1, -+ ,nhy,)B = 0 mod a. Finally notice that B can obtained from B’ by elementary
column operations. Therefore, Ker(B) = Ker(B’). O
4.3 The coinvariant algebra
In this subsection, we prove that the sequence (26) is exact at the middle term.
Composing A and B gives
m—1 n—1 J,.m—j—1 n—1 J —5—1
1”931 ‘ L Zj:m—n T1Lg Zj:T_n le%n !
n— J m—j— n— Jom—j—1
Zj:m—n ToTq nxgn U Zj:m,—n ‘7521'? /
AB =
n—1 7 —i-1
Zj:m—n rxy ™ nay,'

We will show AB = 0 mod a below, which implies Im(A4) C Ker(B) for n < m < 2n.

Lemma 4.5. Fori# j and k <n — 1, we have
xf+xf_lxj+-~-+xix§_1+xf =(-1)* Z Zj, -2, mod a.
1< <Jk,Je i,

Proof. We do induction on k. When k = 1, this follows from z1 + x5 + - - + z,, € a. Assume the lemma is
proved for integer less than k& where k > 2. By Lemma 4.1, we have

:E;c = l‘j((—l)k71 Z Ljy - xjk—l) mod a. (28)

1< <Jr—1,Je#]
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On the other hand, notice that

- § : Ljy oo Lj = T Z Tjy Ty T T § : Ly Ly mod a. (29)

J1<-<Jk,JeF#i,d J1<-<Jr—1,Je 71 J1<<Jr—1,Je#]

Now by the induction hypothesis (modulo a below)

o} =a; | (=) > Tjy e wg, — (@ a2
J1<<Jk—1,JeF#%,3
=(-1)*! > iy gy — (g e aa )
J1<-<Jr—1,JeF1,]
¢ k—1 k—1
(by (29)) =(=1)" Do w0y Ty, Ty ) | = (@ w e )
J1<<Jk,JeF4J J1<<Jr—1,Je#]
(by (28)) =(—1)* > wj g, — (o e T ), O

J1<-<Jr:JeF#iJ

Corollary 4.6. For m > n, the element ¢;; := x;'%"xf‘*l + x;”*"Hxn*Q 4+ x?ilx}’%” is in a.
Thus, AB =0, Im(A) C Ker(B) and rank(A) + rank(B) < (2n — m)n!.

It remains to show rank(A)+rank(B) = (2n — m)n!. We first show the following lemma.
Lemma 4.7. rank(A) = rank(B) and so rank(A) < 285p),

Proof. Computing the rank of A by taking the span of its column vectors we obtain
rank(A) = dime{¢y (27, 2p ) o Gonem (@] 3T, ¢ € R
Computing the rank of B by taking the span of its row vectors we obtain
rank(B) = dime{¢1 (27" "Lt o Panem(27 T 2T, 0 € R
As a result, rank(A) =rank(B). O

It remains to show rank(4) > 2%=nl. Write V; := R(z]'"',---2[*""), the R-submodule in R?"~™
generated by the i-th row vector of A. Then rank(A) = rank(B) = dimc(V4 + --- + V,).

From now on, let R; denote the coinvariant algebra of i variables and Im,,(z}~!) := Im(2] ", R,, — R.).
Note that the composition

IT.171 T
Im,, (271) b, Ry — Ry /Imy, (z;)

is an isomorphism and R,,/Im,, (z;) =& R,—1. Let ¢; : Imn(x?_l) — Rn—1 denote this isomorphism.

Then ¢1 (Tm,, (2771) N Imy, (257 1)) = Ker,,_1(22) = Im,, 1 (25 ) = R, _o.

When m = 2n — 1, V; = Ker(z;) = Im(2}~") and from the discussion above we deduce that dim(V;) =
(n—1)!and dim(V; N'V;) = (n — 2)! when 1 <4,j <n and ¢ # j. In general:

Lemma 4.8. o Whenn <m < 2n, dim(V;) = (2n —m)(n — 1)!
e Whenl<i,j<nandi# j, dim(V;NV;) = (2n —m)(n — 2)!

Proof. Define an operator J; : R2"~™ — R2"~™ given by the following matrix using row multiplication

1 o -+ 0 0
—z; 1 e 0 0
0 0 T xf"‘m
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For example J; = x; when m = 2n — 1. Then V; = Ker(J;) = Ker(z2"~™) is of dimension (2n —m)(n — 1)!.
Let (Ji Jj.) denote concatenation of the matrices J; and J;. When i # j, dim(V;NV;) = dim Ker (J

Using elementary matrix transformations, (Ji Jj) can be transformed into

u.k‘
N

01 .- 0 0 0 - 0

2n—m 2n—m
00 - = 0 - x—x;

Therefore, dimKer (J; J;) = dimKer(z;"™" 2; — 2; x?”_m).

Since (z; — x;)|(z2" ™™ — xf” ™), we get

Ker(z?"™™ z; — x; x?”fm) Ker(z?"™™ z; — x;).

Without loss of generality, we may assume ¢ = 1 and j = 2.
By Lemma 4.9 below, one has Ker(x; — 23) = Z?;ll 1 Rp—2 where

Wi = alah 2 22l T (n— )t )T € Ker(zy — @)

In particular, ¥, _n, Vm-ni1, - s¥n_1 € Ker(zf®™™). Since multiplication by 23"~ preserves the

basis
P ag? - 20" (0 < a; < n—i) (possibly sending some elements to 0), we conclude that

Ym-nRn2+ +n_ 1Rp_2 = Ker(z1" ™) N Ker(z; — x2),
and so dim(V; NV,) = dim Ker(J; Jp) = dim(Ker(23"~™) N Ker(z; — z2)) = (2n —m)(n — 2)!. O
Lemma 4.9. Let R,,_o C R, be generated by x§*x3* -z, 1", 0<a; <n—i. For1<j<n-—1, write
gy = w420 ey T 4 (et el
Then Z;:ll Vi Ry—2 = Ker(z1 — 22, Rp, = Rp).
Proof. We compute

(%*xz)(:r a2 2T e (n = ) T

o ]+1 n 2 ]+1 n 2 j+2 n 3 n—1 j Jj—1
— a4 ad — 217 + 22 +-—=(n—g)al z) + (n—j)zTey
— J.n—1 j+1 n—2 _ n—1
—T1Ty T Iy Ty T 1'2

The element in the last line belongs to a by Corollary 4.6.

Next, consider the basis z{* - -- /"' ordered by lexicographic order on the powers. With respect to this
basis, multiplication by x; can be expressed by
N & In_1y
where I stands for the k x k identity matrix and
0 0 0 0
10 --- 00
N:=]01 --- 0 0
0 0 1 0
nxn
Multiplication by x5 can be expressed by
00 -~ 0 —N"!
I 0 -~ 0 —N"2
0 I --- 0 —N"3|® I(n_g)!
0 0 1 —-N
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Observe that, using elementary row operations, the following matrix that represents multiplication by zo—x1

-N 0 0 —N7l
I —-N 0 —N"2
0 I 0 —N"3|® I(n—2)!
0 o --- I —=2N
can be transformed to

0 0 0 —nN™1

I 0 0 —(n—1)N"2

0 I 0 —(’I’L - 2)N”_3 & I(n—2)!

0o 0 --- I —2N

By column operations we transform it to

0 0 0 —nN" 1
I0 0 0
0 I 0 0 ®@ L(n—2y
0o o0 --- I 0
Since rank(N"~1) = 1, we see dim(Ker(z1 — 22)) = (n — 1)(n — 2)!. The lemma follows. O

Lemma 4.10. dim(Vi N (Va4 -+ V;)) < (i — 1)(2n — m)(n — 2)\.

Proof. Define J; as in the proof of Lemma 4.8 and for 8 > 2 put Jjp 51 = JoJ3 - -+ Jg. Consider the following
short exact sequences:

0= VinVe—=Vin(Vat -+ Vi) 2 (Vi (Va+ -+ Vi) Jz — 0,

0—>[(V10(V2+~-~+Vi))=72]ﬁV3—>(V1ﬂ(V2+~-~+Vi))J2£>(V1ﬂ(V2+~-~+Vi))J[2,3}—>07

Jie
0= [(Vin(Vat-- -+ Vi) Jpi—g] NV = (Vin (Vat -+ Vi) pziimg) = (Vi (Va+ -+ + Vi) Jigi—1) = 0.
We claim that when j =1,2,...,i—1
[(Vin(Va+ -+ Vi) iyl NV; € Vi nKer(Jp )] Jj2,5-1) € ViNVj. (30)

First of all, Ker(Jj2 j1)J[2,—1] C Ker(J;) = Vj, from which the second containment follows. As for the first
containment, take vy = vy + -+ +v; € V1N (Vo + -+ + Vi) where v; € V; for all j. If v1Jj3 ;_1) € Vj, then

(’Uj+1 + -+ Ui)J[Q’]‘] =0,

ie. vjy1+ -+ v € Ker(Jg ). As aresult, vy € VN (Vo + -+ Vj + Ker(Jj2 ;1)) = Vi N Ker(Jjz ;) and
v1Jj2,j—1) € [Vi NKer(J2,;1)]Jj2,j—1)- Hence the claim is proved.
As a consequence of the short exact sequences and the claim,

dim(Vy N (Vo + -+ + Vi)
= dim(Vl N Vg) + dim((V1 N (Vg + V3))J2) + -+ dim((V1 N Ker(J[Q’i])J[Qﬂ-,l])
<dim(V; N Va) + dim(V1 NV5) + - -+ + dim(V; N V;). (31)

The last line equals to (i — 1)(2n — m)(n — 2)! by Lemma 4.8. O
Proposition 4.11. We have a vector space decomposition:

nnVa+---+V)y2WinWh)ae---o(WVinh). (32)
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Proof. We compute

rank(A4) = dim(V; +--- + V)
= dim(V1) + (dim(Va) — dim(Vy N Vo)) + - - + (dim(V,,) — dim(Vy, 0 (Vi + -+ + Viu_1)))
=n(2n —m)(n — ! = (dim(V; N Vo) +dim(Va N (V1 + Vo)) + - - + dim(V, N (V1 + - - - + V,,_1)))
>n(2n —m)(n — 1) — ((Qn —m)n=21+2-Cn—m)(n—-2)!+---+(n—-1)-(2n —m)(n — 2)!)

:(2n_m)n(2n—22—(n—l))(n_2)!: 2n2—mn!

Here the second equality follows from Lemma 4.8 and the third equality follows from Lemma 4.10. By
Corollary 1.7, we conclude that dim(V; + --- + V,,) = 22™nl. Therefore, (31) is actually an equality for
i =1,---,n, the inclusions (30) are equalities. Thus the short exact sequences in the proof of Lemma 4.10

yields (32). O

Corollary 4.12. We have dimc(Vy + -+ Vi) = Q"T*mk(Qn —1—=Fk)n! for1 <k<n.
In particular rank(A) = 22-n) and Im(A) = Ker(B).

Proof. We compute

dim(Vy + - - + Vi) = dim(V3) + (dim(Va) — dim(Vy N V2)) + - - - + (dim(Vg) — dim(Vi, N (Vi + -+ - + Vi—1)))
:k(2n — m)(n — 1)' — (dlm(V1 n VQ) + dlm(V3 N (Vi + sz)) + -+ dlm(Vk N (Vl + -+ kal)))
=k(2n —m)(n —1)! — ((Qn —m)n=21+2-Cn—m)(n—=2)!+---4+(k—=1)- (2n —m)(n — 2)!)

k(2n —2— (k- 1))

—(2n —m) : (n—2n=2"""

E(2n —1—k)n! O

Remark 4.13. The dimension count of Corollary /.12 implies that Im(A) = Ker(B) is a Lagrangian
subspace in H*(B)®Cn=m™) (where B is the flag variety) with respect to the Poincare form defined by

(.8)=d, ifaup=d- §o=m.
Corollary 4.14. If > hypr € He - IV, N CHIY) and (y; — viv1)(O_ hipr) € a holds for all i, then
Z hipr € 1.
Proof. By Lemma 4.4 and Corollary 4.12. O
Corollary 4.15. We have Fi"L, = FfL, for all ¢ > 1.

Proof. Lemma 3.17 says Fi"dL, C FPL.. Lemma 3.18 guarantees that the assumptions of Lemma 3.20
and Proposition 3.23 hold. Lemma 3.20 implies ®.(S;,1,) C Fi"L.. Corollary 4.14 implies part (iii) of
Proposition 3.23 and therefore ®.(S;) € Fi"L.. O
Example 4.16. (See figure 2) Consider ¢ = %, where dim(L) = 5371 = 25. Based on Ezample 5.10, it
remains to determine where p3&; lies (recall that & = x; — x;41). Note that ®.(p2)(ps&i) € estL. is of
weight —2 and hence can not be symmetric. Therefore ®.(p3)(p3&;) must be 0 and thus ps&; € (a?)*e. Since
p3 € Igv, it follows from Corollary /.12 that (yr — yr+1)(p3&) € He for k = 1,2. This is not obvious by

direct computation.

4.3.1 Springer fiber at the minimal nilpotent orbit

There is a mysterious relationship between the matrices A, B and the minimal Springer fiber.
Let G = SL,, with Lie algebra g and B C G the Borel consisting of upper triangular matrices. Let b be
the Lie algebra of B with nilpotent radical n = [b, b].
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Figure 2: Filtrations from example 4.16 where the numbers on the bottom indicate h-weights

Let .4/ be the nilpotent cone in g, there is a unique minimal nilpotent G-orbit consisting of nilpotent
elements in g of rank 1. Let e,,;;, be an element of this orbit and B,,;, the fiber of the Springer map
G xBn— A over epin. By [ | one knows that

H* (Bimin) = C[b]/[(C[0]Y) + (217, 2 ™).

In the case of m = 2n — 1, the right hand side is exactly R/Im(A) = R/Ker(B) = Im(B). Now because
H*(Bnin) = indggtriv, its dimension is exactly %‘ This gives a different proof of Corollary 4.12 when
m = 2n — 1. We do not know how to generalize it to arbitrary n < m < 2n.

4.4 F,for/>1

Recall the subspace S, := (hy) € (a“)e|h € Heytb € IV Na’) which satisfies B.(S;) C FfL,. Our goal
in this section is to show that ®.(S;) C F, ZindLC. The following lemma is the easiest case of Lemma 4.18. It
is stated separately to demonstrate the proof method in general.

Lemma 4.17. Suppose kn <m < (k+1)n. If ¢ € Sy, and (y; — yis1)d € aF for all i, then ¢ € I..

(e=1)

Proof. We simplify the notation v; := v; . From Theorem 4.2, we know that IV, mod a**! is spanned
by Um—n+1," s Vkn- Therefore
kn
o= Z JaVe mod aff! (33)
a=m—n+1
where g, € H,.
Fora=m—n+1,---,kn, by definition
c—1
Vo = ( i ) Z wj, - uj, mod aFtl.
Jitetin=a
We can order uj, ---uj, so that j; > jo > --- > j, and use the lexicographic order. Under this order,
k—1

Up~ Uq—(k—1)n 18 the maximal term. Since py = kuy mod a, we have that

n

¢ = (%Fm—knﬂ + -+ g%pn)uﬁfl + lower terms in lexicographic order modulo a**1 .
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Then modulo a**+1, the part in (y; — yi41)¢ that is divisible by u*~! is the product of u*~! and

(gm—n+1(x;n_kn - xﬁ_lkn) 4+t grn—a (@] 2 - T %)+ kgn (7 —l- x?—&-ll)) (34)

The factor k in the last summand comes from the multiplicity of p,, in p¥ being k.
Hence (y; — y;+1)¢ € a* implies that for all 4, the polynomial (34) lies in a. This means that

(Gm—n+1," " > Gkn—1, kgkn) € Ker(Bym—_gn.n—1) modulo a.
By Corollary 4.12, there exist h; € H. such that one has an equality
(9m7n+1, 5y 9kn—1, kgkn) = (hl, te 7hn)Amfkn,n71 modulo a.

Therefore, by (22) and (33) we have

o= Z h x Mom—ngr + o+ hjx?%"vkn) — (k= 1)vg, modulo aktt
= Zhj 2 g1 + -+ 2] V) — (k= 1)k, modulo a*

k+1

Combining with equation (23): f; = ZJ v, mod aFt! we see that

¢ = Z hjfj — (k — 1)grnvrn modulo a**
J

It remains to show grnvk, € I.. Notice that (kK — 1)(yi — ¥it1)(GrnVkn) = (¥ — Yit1)(d — D hjf;) € ak
for all ¢ implies that (0,---,0, gkn) € Ker(By—gn,n—1)- Applying Proposition 4.12, we deduce that there
exists h} € H. such that (0,---,0,gkn) = (R}, -+ ,hL)Apm—knn—1. Therefore gi,vr, = > hfi mod a* and
GknVkn € L. O

Proposition 4.18. Suppose kn <m < (k+1)n and £ > k. If ¢ € Sp and (y; — yj+1)¢ € a° for all j, then
¢ €.

Proof. Write ¢ = Zz m-n+1 ¢;v; where ¢y, — n+ly" " s Ok € a’~* and ¢nk+1a o Pmo1 € af=k+1 Assume
(i1, yig) (i1 > dg--- > u) is the largest sequence under the lexicographic order such that u;, - - - u;, shows
up in ¢ with a nonzero coefficient in H.. We will use f; to kill this nonzero term in ¢ without adding higher
order terms and as a result, the lemma will follow from induction on (i1, -- ,i).

By definition, one has

c—1
Vo = ( . ) E uj, - -uj, mod a***

Jittjs=a

wheres_kwhenm—n—i-l<a<nkands_k+1whennk+1<i<m—1 The largest term is either
case 1: uq_ nku when nk +2 <i < m —1; case 2: Uy, _ 1uk ! when i = nk + 1 or case 3: u,_ n(k— 1)uk 1
when m—n+1<i<nk.

Case 1: Suppose u;, - - - u;, shows up in ¢,v, with nonzero coeflicient with nk+1 < j < m—1. We may
assume u;, - -+ Ui, = Uiy, * Ui, _,_, U us_nx. Up to some linear rearranging, we may also assume the nonzero
coefficient of this term completely comes from ¢,vo. In other words, the coefficients of w;, - - - u;, in ¢yv,
for v # « add up to be 0. Similarly, if the coefficient of w;, - - u;, , ,uFug in ¢ is nonzero for < a — nk,
we may assume the coefficient is completely contributed by w;, ---w;,_,_,vi for nk+2 < ¢ < m —1 or
Uiy -+ Uiy, UnV; for m —n + 1 <4 < nk (depending on the size of 3).

Inside (y; —yj+1)®, (( P — yﬁ_l)ua nk)ul1 -+-u;,_,_,uk can only be combined with like terms in the form
of ((y] - yﬂ_l)uﬁ)uil s, uk for B < a—nk.
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Assume the coefficients of w;, - --u;, , _,unv; form—n+1<i<nkand u; ---u;,_,_,v; fornk+2 <i<
m—1are hm—ni1," Aok, Bnk+2, -+ » Bm—1(With some of them being possibly 0.). To have (y; —y;4+1)¢ € a’,
by Lemma 4.4, there has to be

(an+2hnk+27 LR melhmfh 0; menJrlhmfnJrla e 7an‘hnk) € Ker(Bl,nfl) mod a.

for some positive integers Zm—na1, " » Znk, Znk+2, " * > 2m—1 due to possible nontrivial multiplicities (as in
(34)).

Since Ker(By,n—1) = Im(A; ,—1), by Corollary 4.12 there exists (g1, -, gn) such that

(znk:+2hnk+27 sy melhmfla 07 Zm7n+lhmfn+1; T aznkhnk> = (.917 T ;gn)Al,nfl mod a.

Recall that by Lemma 4.1, u,, = 2} mod a while (22) says f; = Z?;Ol(xf +al Pug - -—&—uj)vfﬁ:;). Therefore

modulo a*+2 we have

znk+1hnk+2vnk+2 + -+ melhmflvmfl + Zm7n+1hmfn+1unhmfn+1 s anhnkununk

—1 (k+1)n—m+2 n(k+1)—m
= E Gi(x]  Uppyo + -+ 2y Um—1 + 2, UnUm—ntl T+ + TiUnUnk)
i

k+1)—m+1
= gy T
i

Now write (%) := ¢ — 2wz, -+ Uiy, ., Zgix?(kﬂ)*mﬂfi. Then (*) still satisfies that (y; — y;41)(x) € a’ for
all j and the coeflicient of w;, - - - u;,_ kflu,’jua_nk in () is 0 with no higher-order summand added compared
to ¢. Our goal is achieved.

Case 2: Suppose the nonzero coeflicient of u;, ---u;, in ¢ comes from ¢pp41Vnk+1 and so u;, ---u;, =
Uiy Ui,y Usty—qul ™1, Similar as case 1, inside (y; — y;+1)¢, terms ((y; — yj41)u2)ui, -+ s, ul can
only be combined with like terms in the form of ((y; — yj41)ug)ui, -+ i, _,_,un—1ub~! for 8 < 2, which are
0. Set the coefficient of ulgluibkiluQun_lu’ffl to be hpg+1. Then

(05 e 70a hnk+17 07 e 70) S Ker(Bl,nfl) = Im(Al,n71>-
Here hpiy1 lies in the (n(k + 1) — m + 1)-th entry. Therefore there exists g; € H, such that
Nk 1Vnk41 = Zgi(xyilvmfn%»l o T Yy B ) = Zgifi mod a" 2.
Now the highest degree in ¢ — u;, -+~ ui,_,_, 2. ¢ifi is lower than the original (i1,--- ,4).

Case 3: Suppose the nonzero coeflicient of u;, - - - u;, in ¢ comes from ¢,v, for m—n+1 < o < nk. Then
Uiy » Uiy = Uiy ~-~uiefku’ff1ua_n(k_1). Given case 1, we may assume iq,---,iy < n. If the coefficient of
Uiy -+ 'uihkuﬁfluﬁ in ¢ is nonzero, we may assume the coeflicient is completely contributed by w;, - - - w;, ,vi
form—n+1<i<nk.

Inside (y; — y;+1)®, ((yj — yjﬂ)ua,nk)uil --~u;, ,uf~1 can only be combined with like terms in the
form of ((y; — yj+1)ug)ui, -+ ui,_,ubt for B < o — nk. Assume the coefficient of w;, ---u;,_,v; is h;,

i=m—n-+1,--- ,nk (with some of the h; possibly being 0). Then

(Zm—n+lhm—n+la e >anhnk) S Ker(Bm—nk,n—l) = Im(Am—nk,n—1)~

for some positive rational numbers 2, —n 41, - , 2nk due to possible nontrivial multiplicities. Therefore there
exists g; € H. such that

m—n(k—1)+1

1 k+1
Zm7n+1hm7n+1hmfn+l + -+ anhnkunk - § 91(357 Um—n+1 + -+ €, Unk) mod a + s

and
_ 441
Ugy * - uig,k(zm—n+1hm—n+1um—n+l + -+ anhnkunk) = Ugy " Ujp_y, § gifz' mod a .
[

Similar to the previous cases the highest degree in ¢ — iuil Ui, ».9ifi is lower than the original
(in, 0+ ic)- 0
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4.4.1 Proof of the main theorem

With all the puzzle pieces collected, we summarize the proof of Theorem 3.16.

Proof. By Corollary 3.12 and Lemma 3.17, we need to show FfL. D F/"L, for all ¢ > 0 and ¢ = 2 > 1
with (m,n) = 1. We do so by induction on both ¢ using the order in the proof of Lemma 3.13 and Fj.

The base case of Fy is shown in Lemma 3.18 for any ¢ > 1. On the other hand, for all ¢ > 0
FgelL, = C -1 = FirdeL,.

For ¢ > 1 and ¢ > 0, assume we have shown that FfeL. = Fi"deL. for all i > 0 and ¢’ such that ¢’ < c,
and assume also that FjL. = F, ei,“dL for 0 < ¢/ < £. Note that because F* and F™™ are both compatible
with the isomorphism eL= = eL= when n,m > 1, and that > < * when n > m, our assumptions also
imply that Ff'eL,_ = FmdeLc 1 for all ¢ > 0.

Now take a homogeneous ¢ € (a‘*1)+e such that 0 # ®.(¢) € FpLe. If ¢ € Sj‘c, by Lemma 3.20, we
conclude from the induction hypothesis on ¢ that ®.(¢) € Fi"IL,.

Hence we may assume ¢ € Sy, in which case £ > |c¢]. If ¢ € (C[h]W, then by Lemma 3.6, (y; — yi+1)$ €

(af)*e; if ¢ ¢ C[p]"™, Proposition 4.18 implies that (y; — yi11)¢ € (a*)*e. Because £ > 0, ®. (d)) is not a
highest weight vector. Now the equality (21) and the inductive hypothesis on F} implies that ®.(¢) € Fi"L...
This concludes the proof of Theorem 3.16. O

4.5 Description of F*® for ¢ < 1

Let ¢ = < 1 for positive integer m coprime to n. Inside L. one can define H,. := ate and it still holds
that L. = H, - eL.. In this setting, H. is now only a proper submodule of the regular representation of S,,.

Proposition 4.19. For all1<k<mn-—1,¢>0 and ®.(¢) € F{'L., we have ®.((yx, — yx+1)¢) € Ff ,Le.

Proof. We first note that when ¢ < 1 the equivalence of statements in Proposition 3.23 holds for the whole
L. rather than merely S;. Therefore we only need to show that if ¢ € (a®*1)Le Naf satisfies (yx —yr11)0 € af
forall k=1,...,n— 1 then ¢ € I..

We first prove the case when ¢ = 1. Recall the ideal I, C C[h] is generated by

m
— 3 ,,(€) _
fl—g vy, t=1--.n
Jj=0

where

UJ(C):cuj moda, j=2,---,n

Take ¢ = >, hip; € (a®)*c where h; € H.. Since the proposition holds when ¢ is symmetric by
Lemma 3.6, we may assume that hs,...,h, are non-constant. By Lemma 4.4, (yx — yx+1)¢ € a for all
k=1,---,n—1if and only if (2hs,--- ,nh,) € Ker(Bz2,-1). By Corollary 4.12, there exists g1, - - , g, such
that (2hg,--- ,nh,) = (g1, - ,gn)A2n—1. Therefore,

Z hip; = Zzhzul = i:zn:gjx}”l*iui mod a.

i=2 j=11i=2

Note that ¢) ;" ;H'l by = l’;H_l_m(fj —z}") mod a. Thus we obtain that

323 0w Y
=1 =2 Jj=1
2.

1
c

(7 =) g D4l mod a

( ntl=m g, +ai™" fﬁll +- +xjv§f)) mod a.

The second equality follows as JT?-H € a. Since the ideal IV C C[h]" is generated by vi,fl_l, e ,viﬁl_n_l, we

conclude that Y7, h;p; € I..
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When ¢ > 1, suppose (yx — yrr1)¢ € a‘t! for all k. Assume (iy,--- ,i¢) (i1 > ig--- > iy) is the largest

sequence under the lexicographic order such that w;, ---u;, shows up in ¢ with a nonzero coeflicient in
H.. Similar to the proof of Proposition 4.18, we will use f; to kill this nonzero term in ¢ without adding
higher-order terms, and as a result, the proposition will follow from induction on (i1, - , ).

For v = 2,...,14, let h, € H. be the coefficient of u;, ---u;, ,uy in ¢. Inside (yr — yr+1)9, hw((y;c -
ykﬂ)uie)uil -+ -u;,_, can only be combined with like terms in the form of h,y((yk — ykﬂ)u,y)uil -y, for
v =2,...,90 — 1. Therefore (yx — yrs1)¢ € a’*! for all k implies that

(z2h2, -+, znhy) € Ker(By p—1) mod a

where z;’s are integers with z;, # 0 and z, = 0 for v > 4;,. By the discussion above in the case of £ =1,
we can express >0 _o 2yhyty by fi,.., fo. Write (%) := ¢ — 2=(300_y 2y hyuq Jus, - - uq, . Then (x) still
»

satisfies (yr — yr41)(*) € af for all k and the coefficients of u;, - - - u;, in () is 0 with no higher-order term
added compared to ¢. This concludes the proof of the proposition. O

A Distributive lattices

One can use the language of distributive lattice to further describe the structure captured by (32) in
Proposition 4.11.
Following | 11 ], we define the following notions:

e A set of subspaces of vector space U is called a lattice if it is closed under taking sum and intersections.

o A lattice is called distributive if U; N (Us + Us) = (U1 NUs) + (U1 N Us) for any elements Uy, Uz, Us in
the lattice.

o A n-tuple (Uy,---,U,) of subspaces in U is called distributive if the lattice generated by Uy,--- ,U,
is distributive.

o A n-tuple is called predistributive if all the (n — 1)-tuples (Ul,...,Ui, o, Up), i = 1,-+- ,n, are
distributive.

o A n-tuple is called acyclic if all the 3-triples (U1 N---NU;, Uir1,Usjzo+---+Uy,), i =1,--- ,n—2, are
distributive.

Lemma A.1. [ , Lemma 4.5.2] A n-tuple (Uy,--- ,U,) of subspaces in U is distributive if and only if
it is both predistributive and acyclic.

Write V; = {(:c?_lcb, ce " TP) g € RY C RZV™ for i =1,2,- -+ ,n. We will finally show that
Proposition A.2. The n-tuple (Vi,---,V,) is distributive.

To prove this, we first establish the following lemma:
Lemma A.3. For any 1 < j < i, we have
Vin--nVinWViga+-+Vi)=Vin---nV;nVi) +(Vin---nV;nNVia) +---+(Vin---NV;NV)

Proof. Consider the short exact sequences
VinVan:--NV;NVipr = VinVan- -0V 0 (Vigr -+ Vi) 25 (VinVan--nVn (Viga +- -+ Vi) Jj
(Vin--nVin(Vigr +-+ Vi) T N Vi = (Vi -0V 0 (Vigr + -+ Vi) i

Jj
S (Vin VN (Vier + -0+ Vi) i s



(Vin-nVin (Vi 4+ Vi) Jjpr - Jica NV = (Vi NV N (Vigr + -+ Vi) Jja - Jia
Ji_
—1>(Vlm"'m‘/jm(‘/j+1+"'+‘/i))Jj+1"'Ji71,
from which we obtain

dimVlﬂ-~-ﬂVjﬁ(Vj+1+-~-+Vi):dimVlﬂVgﬂ---ﬂVjﬂVjH
(Vi N V0 (Vi - V)] 1 Vi 4+ -+
+dim(V1ﬂmOVjﬁ(‘G+1+~--+W))Jj+1~~Ji,1.

On the other hand, for 1 < j <1 and 1 < k < i — j, there are inclusions

(Vin---nVin(Vigr + -+ Vi) Jjwa - Jjrr—1] N Vi
cvin---nVinKer(Jjy1 - Jjpr)Jj1 o Jjpp—1 C VIO NV N0 Vg

As a consequence

<.
|
<.

dmVin---nV;Nn(Vjzi +---+V;) < dimVin---NV;N V.

=
Il
—

Therefore the inclusion

Vin---nV;n(Vijpi+---+Vo)oVin---nV;NnVip)+(Vin---nV;NVie)+---+(Vin---NnV;NY)

has to be an equality. O
Now we are ready to prove Proposition A.2.

Proof of Proposition A.2. We show the lemma by induction. The cases of n = 1 or 2 is trivial. When n = 3,

a 3-tuple (U1, U, Us) is distributive if and only if U; N (Us +Us) = (U1 NU2) + (U1 NUs) (] , example
after Lemma 4.5.1]). Our (V1, Va, V) satisfies this property.

Now assume any (n — 1)-subtuple of (Vi,---,V,) is distributive. In other words, (V1,---,V,,) is pre-
distributive. By Lemma A.1, it only remains to show that (V1,---,V,) is acyclic, i.e. all the 3-triples

VNNV, Vig1,Viga+ -+ V), i =1,--- ,n — 2, are distributive. But this follows from the identity

Vin--nVin(Vigr + (Viga +---+ V)
=Vin---nVinViq)+(Vin---nVinViga) +---+(Vin---NV;N,)
=Vin---nVinVig)+(Vin---nVin (Viga + -+ Vo))

using Lemma A.3 twice. O
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