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following Galashin and Lam, arXiv:2012.09745(v3)
Last updated February 28, 2024

I would like to give a series of talks that outlines the main statements of [GL20] and then meanders
through the various objects which appear.

My plan is to give one talk on [GL20], one or two talks on cluster theory (cluster algebras and examples,
then cluster varieties and their cohomology), and one talk on Hogancamp’s and Muller+Speyer’s recur-
rences.

[⋆I will not give the recurrences talk, as I talked a lot about cluster stuff already.⋆]
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1 Galashin+Lam

1.1 Main theorem and applications
Themain theorem of [GL20] expresses KhR homology of certain links as honest cohomology of varieties:

Theorem 1.1.1 ([GL20, Thm 1.16, 1.17]). Let v ≤ w ∈ Sn and let βv,w = β(w)β(v)−1 be a Richardson braid. Let
β = β̂v,w be the corresponding Richardson link and let R◦

v,w = (BwB ∩ B−vB)/B ⊂ Fl(n) be the corresponding
Richardson variety. Then we have bigraded isomorphisms

H∗
T,c(R

◦
v,w)

∼= HHH0(F •
β )

H∗(R◦
v,w)

∼= HHH0
C(F

•
β ),

where HHH0(−) := H•(HH0(−)) is zero-th KhR homology and HHH0
C(−) := H•(HH0(−)⊗R C).

(The bigrading on honest cohomology comes from Hodge theory; more on that later.)
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Example 1.1.2 (KhR helps Richardson). Let wk = (k + 1) . . . n1 . . . k. The Richardson braid βid,w is the
(k, n − k) torus link. It follows that the Hilbert series H(H∗

T,c(R
◦
id,wk

); q, t) is the Hilbert series of torus link
homology.

Assume that gcd(k, n) = 1. In this case, Mellit [Mel17] showed that, after a renormalization (see [GL20,
pg 27] for the precise statement), the Hilbert seriesH(HHH0(F •

β ); q, t) is the q, t-Catalan number

Ck,n−k(q, t) =
∑
P

qarea(P )tdinv(P ).

In particular, (after a renormalization) the Hilbert seriesH(H∗
T,c(R

◦
id,wk

); q, t) is also equal to the q, t-Catalan
number. I believe that this fact was not known before [GL20]. △

Remark 1.1.3. For any k, n, the Richardson variety R◦
id,wk

is a friendly object: the projection Fl(n) → Grk,n
gives an isomorphism from R◦

id,wk
to the maximal open positroid variety Π◦

k,n ⊂ Grk,n, that is,

R◦
id,wk

∼= {V ∈ Grk,n : ∆{a+1,a+2,...,a+k}(V ) ̸= 0 for all a} (indices taken mod n).

(See [GL20, Prop 4.3] or [KLS11, Thm 5.19].) △

Problem 1.1.4. Find a more geometric proof of the fact that H(H∗
T,c(R

◦
id,wk

); q, t) ≈ Ck,n−k(q, t).

Remark 1.1.5. Galashin andLammake sure of intermediate renormalizationsPKR andP(Y ) given in [GL20,
(3.15)], [GL20, (4.6)]. These are not the same as H above. △

Example 1.1.6 (Richardson helps KhR). It is known that every open positroid variety [GL19] (or more gen-
erally, I think, any open Richardson variety [GLSBS22]) is a locally acyclic cluster variety. The cohomology
of these varieties are of Hodge-Tate type, meaning that Hn,(p,q)(X,C) ̸= 0 only when p = q, and the varieties
also satisfy curious Lefschetz, meaning that there exists γ ∈ H2,(2,2)(X,C) so that

γd−p : Hp+s,(p,p)(X,C) ∼−→ H2d−p+s,(2d−p,2d−p)(X,C).

As with usual Lefschetz, these isomorphisms imply that certain dimension counts hn,p := dimHn,(p,p) are
unimodal and symmetric:

hs,0 ≤ h2+s,2 ≤ · · · ≤ hd+s,d ≥ · · · ≥ h2d−2,2d−s−2 ≥ h2d,2d−s,

h1+s,1 ≤ h3+s,3 ≤ · · · ≤ hd−1+s,d−1 = hd+1+s,d+1 ≥ · · · ≥ h2d−3,2d−s−3 ≥ h2d−1,2d−s−1.

These properties imply that (after renormalization), the Hilbert series H(HHH0(F •
β ); q, t) is q, t-symmetric

and q, t-unimodal in the sense that for any d the coefficients of qd, qd−1t, qd−2t2, . . . , td are unimodal. △

Remark 1.1.7. There is a direct proof ([GL20, Thm 4.11]) that H∗(R◦
v,w,C) and H∗

T,c(R
◦
v,w,C) are Hodge-

Tate, but they don’t prove curious Lefschetz.
It is known ([Bri04, pg 12], [GL20, Lem 4.4]) that R◦

v,w is a smooth affine variety. Smoothness implies
that the Hodge weights of Hk(R◦

v,w,C) are concentrated in degrees {k, k + 1, . . . , 2k}. △

1.2 Conjectures and other results
When wv−1 ∈ Sn is a single cycle, the torus T acts freely on R◦

v,w and the quotient R◦
v,w → R◦

v,w/T has a
section. (This automatically implies that R◦

v,w
∼= (R◦

v,w/T )× T .)
When gcd(k, n) = 1, the permutation wk ∈ Sn is a single cycle and the variety X ◦

k,n := Π◦
k,n/T is known

to be a smooth affine cluster variety.
Conjecture 1.2.1 ([GL20, Conj 1.21]). There is a deformation retraction from X ◦

k,n to the compactified Jacobian
Jk,n−k of the plane curve singularity xk = yn−k sending the weight filtration of H∗(X ◦

k,n) to the perverse filtration
of H∗(Jk,n−k).
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[⋆Is H∗(Jk,n−k) already known to be the q, t-Catalan? [⋆Yes? I forgot, sorry...⋆]⋆]
Hogancamp and his coauthors have found recurrences ([Hog17] for various products of full twists

and Jucys-Murphy braids, [HM19] for torus links, and [EH16] for some other stuff(?)) which compute
HHH0(F •

β ) for various links β.

Problem 1.2.2. Find analogous recurrences for HHH0(F •
β ) and HHH0

C(F
•
β ) for Richardson links β.

Remark 1.2.3. These recurrences involve Rouquier complexes which are not F •
β for any torus link. However,

all involved Rouquier complexes have vanishing odd cohomology, and this property is useful for Hogan-
camp and his coauthors.

It is known [GL20, Ex 4.21–4.23] that not all Richardson links have vanishing odd cohomology. Perhaps
one should restrict to special classes of Richardson links. △

There are standard techniques [LS16, LS21] to compute the cohomology of cluster varieties by relating
them to smaller cluster varieties via the long exact sequence. These give recurrences for positroid varieties
[GL22, (5.2)].
Problem 1.2.4. Relate these recurrences to Hogancamp’s recurrences.

Lefschetz theorems often lead to symmetry and unimodality; combinatorialists love this. Combinatori-
alists also love log-concavity, and these theorems often follow from Hodge-Riemann relations.
Problem 1.2.5. Is there a “curious Hodge-Riemann” relation for HHH0(F •

β ), and does it imply log-concavity?

It is known that HHH0(F •
β ) is (essentially) a link invariant. Xinchun and I have some small progress on

the following general problem:
Problem 1.2.6. Find links which are closures of different Richardson braids, and use link invariance ofHHH0 to relate
cohomologies of disparate Richardson varieties or compute cohomology of more Richardson varieties.

There is a y-ified version HY(F •
β ) of KhR homology introduced by Gorsky and Hogancamp [GH17]. In

some sense it is supposed to play the role of equivariant KhR; for example [GH17, Thm 1.17] feels like the
localization theorem in equivariant cohomology: in many cases HY(F •

β ) is a free module and the map into
HY(F •

split(β)) is an injection.

Problem 1.2.7. Is there an analogue of [GL20] for HY(F •
β )?

2 Cluster algebras
[⋆E6-singularity: H1(F ) of Milnor fiber has E6 intersection pattern⋆]
[⋆P = W ?⋆]
The eventual goal of the next two talks is to discuss Lam and Speyer’s paper “Cohomology of cluster

varieties I. Locally acyclic case” [LS16]. I want to state curious Lefschetz precisely and discuss some sur-
roundings (e.g. how to build curious Lefschetz for large varieties out of smaller ones).

In this talk I discuss the basics of cluster algebras. I want to highlight some beautiful, if maybe irrelevant,
bits of the theory as well. I will not be able to do the subject justice. The theory began in a series of four
papers [FZ01, FZ02,BFZ03, FZ06] called “Cluster Algebras I–IV” along with many auxillary papers. There
is a textbook called “Introduction to cluster algebras” in preparation; preliminary drafts are on the arXiv
[FWZ16,FWZ17,FWZ20,FWZ21]. Fomin has a Proc. ICM survey [Fom10], as well.

2.1 Cluster algebra preamble
Definition 2.1.1. An ice quiver is a quiver which n+m vertices where:

• m of the vertices are designated frozen and the other n vertices are designated mutable,
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• there are no directed edges between frozen vertices,
• there are no loops or directed 2-cycles. △

Definition 2.1.2. Let Q be an ice quiver. For any mutable vertex k, the mutated quiver µk(Q) is obtained
from Q by modifying its edges as follows:

• For every i → k → j such that at least one of {i, j} is mutable, add an arrow i → j

• Reverse all arrows i → k and k → j

• Cancel out any 2-cycles. △

Example 2.1.3. The quiver on the left in the figure below is an ice quiver Q with mutable vertices {2, 4, 5}
and frozen vertices {1, 3, 6}. The quiver in the middle is the ice quiver µ2(Q). The quiver on the right is the
ice quiver µ3(µ2(Q)).

△

Fix integers n,m ≥ 0 and let x1, . . . , xn+m denote indeterminates. (Later, we will define the cluster
algebra associated to an ice quiver with n mutable vertices andm frozen vertices.)
Definition 2.1.4. An extended cluster is a tuple x = (φ1, . . . , φn+m) of rational functions in the xi. The rational
functions φ1, . . . , φn are called cluster variables and the rational functions φn+1, . . . , φn+m are called frozen
variables. △

Definition 2.1.5. A seed is a pair (x, Q)where x is an extended cluster and Q is an ice quiver. △

Definition 2.1.6. Let (x, Q) be a seed and let k be a mutable vertex of Q. The mutated seed µk(x, Q) is the
seed (x′, µk(Q)) where x′ is obtained by replacing φk with

φ′
k =

 ∏
e∈E

s(e)=k

φt(e) +
∏
e∈E

t(e)=k

φs(e)

 · 1

φk
.

The relation
φ′
kφk =

∏
e∈E

s(e)=k

φt(e) +
∏
e∈E

t(e)=k

φs(e)

is called the exchange relation. △

Example 2.1.7. Letx = (x1, x2, x3, x4, x5, x6) and letQ be as in Example 2.1.3. The seedµ2(x, Q) is (x′, µ2(Q))
where x′ is obtained from x by replacing x2 with

x′
2 :=

x3x4 + x1x5

x2
.
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The seed µ3(µ2(x, Q)) is (x′′, µ3(µ2(Q)))where x′′ is obtained from x′ by replacing x3 with

x′
3 :=

x′
2 + x6

x3
=

x3x4 + x1x5 + x6

x2x3
.

So, to summarize, we have

x′′ =

(
x1,

x3x4 + x1x5

x2
,
x3x4 + x1x5 + x6

x2x3
, x4, x5, x6

)
.

△

Lemma 2.1.8. Mutation of seeds is an involution: µk(µk(x, Q)) = (x, Q).

Remark 2.1.9. Mutations do not commute: µk(µℓ(x, Q)) need not be equal toµℓ(µk(x, Q)). They do commute
if#{k → ℓ} = #{ℓ → k} = 0. Even quiver mutation does not commute: below is µ3(µ2(Q)) and µ2(µ3(Q)),
where Q is as in Example 2.1.3:

△

2.2 Cluster algebras from ice quivers
In what follows, fix an ice quiver Qwith n mutable vertices andm frozen vertices.

Definition 2.2.1. The initial seed is the pair (x∅, Q∅)where x∅ = (x1, . . . , xn+m) and Q∅ = Q. △

Definition 2.2.2. For a finite sequence t = (t1, t2, . . . , tℓ) of mutable vertices ti ∈ [n], define (xt, Qt) to be
the seed µtℓ(µtℓ−1

(. . . (µt1(x∅, Q∅)) . . . )). Denote the cluster variables in xt by φt;i(x1, . . . , xn+m). △

Definition 2.2.3. The cluster algebra A associated to Q is any of:
(I) R[φt;i(x1, . . . , xn, xn+1, . . . , xn+m)], where R = C[xn+1, . . . , xn+m],
(II) R′[φt;i(x1, . . . , xn, xn+1, . . . , xn+m)], where R′ = C[x±

n+1, . . . , x
±
n+m],

(III) C[φt;i(x1, . . . , xn, 1, . . . , 1)].
△

Remark 2.2.4.

• The convention in [LS16] will be to use (II). We will see that inverting the frozen variables amounts to
restricting from a Grassmannian to the maximal open positroid. (You can imagine, though, that much
of the theory is focused on (I) or (III).)

• The construction (III) can actually be viewed as “construction (I) or (II) for the full subquiver ofQ on
mutable vertices”. (This is [Mul11, Prop 3.7].)

△
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Example 2.2.5. Let Q be the type A2 Dynkin quiver. Let’s compute the cluster algebra A associated to Q.
In this case, quiver mutation at either mutable vertex amounts to flipping the orientation of the edge.

Let us write Q′ for the quiver Qwith the edge reversed.
The exchange relation will always be of the form

φ′
k =

φℓ + 1

φk
, {k, ℓ} = {1, 2}.

So we compute:

µ1((x1, x2), Q) =

((
x2 + 1

x1
, x2

)
, Q′
)

µ2µ1((x1, x2), Q) =

((
x2 + 1

x1
,
x2+1
x1

+ 1

x2

)
, Q

)

=

((
x2 + 1

x1
,
x1 + x2 + 1

x1x2
, Q

))

µ1µ2µ1((x1, x2), Q) =

((
x1+x2+1

x1x2
+ 1

x2+1
x1

,
x1 + x2 + 1

x1x2

)
, Q′

)

=

((
x1 + x2 + 1 + x1x2

x2(x2 + 1)
,
x1 + x2 + 1

x1x2

)
, Q′
)

(!!!)
=

((
x1 + 1

x2
,
x1 + x2 + 1

x1x2

)
, Q′
)

µ2µ1µ2µ1((x1, x2), Q) =

((
x1 + 1

x2
,
x1+1
x2

+ 1
x1+x2+1

x1x2

)
, Q

)
(!!)
=

((
x1 + 1

x2
, x1

)
, Q

)

µ1µ2µ1µ2µ1((x1, x2), Q) =

((
x1 + 1
x1+1
x2

, x1

)
, Q′

)
(!)
= (x2, x1, Q

′).

At this point we observe that stacking more . . . µ1µ2’s on the seed will not produce any new rational func-
tions; for example the cluster variables in µ2µ1µ2µ1µ2µ1 will be the same as those of µ1. Similarly, one
can check that the cluster variables arising from first applying µ2 and then alternating mutations will not
produce any new cluster variables.

We deduce that

A = C
[
x1, x2,

x2 + 1

x1
,
x1 + 1

x2
,
x1 + x2 + 1

x1x2

]
= C[a, b, c, d, e]/⟨ca− b− 1, db− a− 1, eab− a− b− 1⟩

△

3 Cluster theory
Originally I intended to stay focused on things closely related to cluster varieties and link homology, but

I got distracted and today I want to talk about some beautiful aspects of cluster theory.
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[⋆Yixuan asked whether a cluster algebra is the affinization of the union of cluster tori. The answer is no
in general, but yes for coordinate rings of open positroids. More on this later⋆]

3.1 Examples of cluster algebras
Proposition 3.1.1. Let Q be the appropriate generalization of the ice quiver

where one has an An Dynkin mutable quiver along with n+ 3 frozen vertices oriented as above.
Then the cluster algebra associated to Q has only finitely many cluster variables {φt;i}.

Remark 3.1.2. In particular, the cluster algebra associated to the typeAn Dynkin quiver with edges oriented
“left to right” also has only finitely many cluster variables, as they are obtained by specializing frozen vari-
ables above to 1. See [Mul11, Prop 3.7] for a proof that deleting frozen vertices amounts to setting frozen
variables equal to 1. △

Proof sketch. First I argue that {µt(Q)} is finite.
Consider a triangulated (n+ 3)-gon:

Given a triangulation T , construct the mutable quiver QT where the vertices correspond to edges of T
and the edges correspond to pairs of edges of T which are part of a triangle, oriented clockwise:

A diagonal flip is:

Lemma 3.1.3. Let T ′ be the triangulation obtained from T by flipping the diagonal corresponding to the mutable
vertex k of QT . Then QT ′ = µk(QT ).
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It follows that the set of triangulations surjects onto the set {µt(Q)}.
Now I argue that {φt;i} is finite. The strategy will be to show that for any fixed x = (x1, . . . , xn+m) ∈

Rn+m
>0 , the set {φt;i(x)} is finite. It then follows that only finitely many rational functions appear in the set

{φt;i}.
To this end I will introduce Penner coordinates. Fix n+ 3 points p1, . . . , pn+3 on the unit circle.

Theorem 3.1.4 (Penner). Given x ∈ Rn+m
>0 there exists a hyperbolic metric on the unit disk and a collection of

horocyles around each pi so that

xi =

{
λ(p1, pi+2) when i ≤ n

λ(pi−n, pi−n+1) when i ≥ n+ 1

where λ(pi, pj) := exp(ℓ(pi, pj)/2) is the lambda length, and ℓ(pi, pj) is the length of the segment of the geodesic
connecting pi and pj which is between the horocycles.

(I believe that this formulation of Penner’s results is due to S. Fomin and D. Thurston; [FT12, Thm 7.4].
Penner proves earlier versions of this theorem in [Pen87, Thm 3.1] and [Pen04, Thm 5.10].)

The seed (x∅, Q∅) is thus encoded by a decorated hyperbolic metric g and the triangulation T .
Lemma 3.1.5. For any decorated hyperbolic metric g and any 4-tuple of cyclically ordered points p1, p2, p3, p4 on the
unit circle, the lambda lengths λ(pi, pj) satisfy

λ(p1, p3)λ(p2, p4) = λ(p1, p2)λ(p3, p4) + λ(p2, p3)λ(p4, p1).

Corollary 3.1.6. Suppose that a seed (x, Q) is encoded by a decorated hyperbolic metric g and a triangulation T .
Then, the mutated seed µk(x, Q) is encoded by the decorated hyperbolic metric g and the triangulation T ′ obtained by
flipping the diagonal corresponding to k.

Thus, the set of lambda lengths {λ(pi, pj)} surjects onto the set {φt;i(x)}; the result follows.
Theorem 3.1.7 (cf. [FWZ20, Thm 6.7.8]). Fix k < n. LetA be the cluster algebra of type (I), (II), (III) respectively
associated to the ice quiver Qk,n given by (the appropriate generalization of) the ice quiver in Figure 1.

ThenA is the homogeneous coordinate ring ofGr(k, n),Π◦
k,n, andCk,n respectively. [⋆The Catalan variety is only

defined when gcd(k, n) = 1, I believe⋆]
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Figure 1: The quiver Q3,7. One draws a k × (n− k) rectangle plus one vertex at the northwest, then freezes
the south and east sides.

Proof sketch in the case k = 2. In the case k = 2, the mutable part of the ice quiver Q2,n is a type An−3 quiver.
We recycle some ideas from the proof of Proposition 3.1.1. In the proof we showed that a cluster variable φt;i

is naturally identified with a pair of vertices pi, pj : there was some “lambda length” recipe and one checked
that for any 4-tuple of cyclically ordered points pi, pj , pk, pℓ the lambda lengths satisfy the exchange relation
λ(pi, pk)λ(pj , pℓ) = λ(pi, pj)λ(pk, pℓ) + λ(pj , pk)λ(pℓ, pi).

I remind you that the homogeneous coordinate ring of the Grassmannian Gr(2, n) is generated by the
Plücker coordinates {∆I : |I| = 2} subject to the Plücker relations

∆{i,j}∆{k,ℓ} −∆{i,k}∆{j,ℓ} +∆{i,ℓ}∆{j,k} = 0. (for any i, and any j < k < ℓ).

An isomorphism betweenA and C[Gr(2, n)] is given by sending a cluster variable φt;i corresponding to the
lambda length λ(pi, pj) to the Plücker coordinates ∆{i,j}.

To make all the details work (e.g. we should check that the ideal of relations among cluster variables
is generated by exchange relations – which is not always true for general cluster algebras!), one can use
[FWZ20, Prop 6.2.1]; it gives sufficient conditions to identify a given cluster algebra with a given coordinate
ring.

Since the frozen variables correspond to the cyclic Plücker coordinates, we deduce that the cluster algebra
of type (II) is the homogeneous coordinate ring of the maximal open positroid.

By [Mul11, Prop 3.7], deleting frozen vertices in a quiver amounts to setting frozen variables equal to
1 in the cluster algebra. Hence the cluster algebra of type (III) is the coordinate ring of the Catalan variety
when gcd(k, n) = 1.

3.2 Finite type classification
Theorem 3.2.1 (Special case of [FZ02, Thm 1.8]). LetQ be an ice quiver. The associated cluster algebra has finitely
many cluster variables if and only if {µt(Q)} contains an orientation of an ADE quiver.

(Such cluster algebras are called cluster algebras of finite type.)
Remark 3.2.2. The full theorem [FZ02, Thm 1.8] goes something like this (see also [FWZ17, Ch 5]). One can
generalize our ice quiver setup as follows: quivers give rise to skew-symmetric matrices B = (bij) encoding
edges. Quiver and seedmutation are replacedwith formulas in terms of the bij rather than in terms of edges
of the quiver. We get a notion of a cluster algebra associated to a matrix and our quiver setup corresponded
to those cluster algebras associated to skew-symmetric matrices.

Wisdom says that cluster algebras associated to skew-symmetrizablematrices are nearly as well-behaved
as those associated to skew-symmetric matrices. Write A(B) = (aij) be the matrix

aij :=

{
2 if i = j

−|bij | if i ̸= j
.

Then, [FZ02, Thm 1.8] (see also [FWZ17, Thm 5.2.8, Thm 5.2.11]) asserts that the cluster algebra associated
to B has finite type if and only if it is mutation equivalent to a matrix B′ so that A(B′) is a Cartan matrix of
finite type (i.e. An, Bn, Cn, Dn, E6, E7, E8, F4, G2). △
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Remark 3.2.3. In [FWZ17, pg. 19], they explicitly say that they are not aware of a simple argument that
would directly derive the classification from one of the instances of the classical Cartan-Killing classification.

△

Remark 3.2.4. There is a classification of quivers for which {µt(Q)} is finite due to Felikson, Shapiro, and
Tumarkin [FST08, Thm 6.1]: Besides cluster algebras of rank 2 and cluster algebras associated with triangu-
lated surfaces, there are exactly 11 exceptional cases of which 9 are root-system-ish and 2 seem completely
random to me. △

3.3 Laurent phenomenon
Remark 3.3.1. Cluster algebras are not always finitely generated. I believe (never actually checked / saw a
proof) that the algebra associated to

is not Noetherian because the Zariski tangent space at the maximal ideal generated by all cluster variables
is infinite dimensional.

More generally, it is known [FWZ20, Prop 6.8.1] that a cluster algebra associated to a quiver Q with 3
mutable vertices is finitely generated if and only if it is mutation equivalent to an acyclic quiver. △

Theorem 3.3.2 ([FZ01, Thm 3.1]). Fix any sequence s = (s1, . . . , sk). Then every cluster variable φt;i can be
expressed as a Laurent polynomial in the quantities {φs;i}, that is to say, A ⊆ C[φ±

s;i].

Example 3.3.3. We saw that the cluster variables for the A2 quiver were{
x1, x2,

x2 + 1

x1
,
x1 + 1

x2
,
x1 + x2 + 1

x1x2

}
.

Evidently, all five variables are Laurent polynomials in the initial variables (x1, x2). But each variable is also
a Laurent polynomial in the quantities (φ1, φ2) := (x1+1

x2
, x1+x2+1

x1x2
); for example, we have x2 = φ1+φ2+1

φ1φ2
. △

Definition 3.3.4. The upper cluster algebra associated to Q is the ring

U :=
⋂
t

C[φ±
t;i]. △

The Laurent phenomenon guarantees thatA ⊆ U . Equality does not always hold, but it is known to hold
in many good cases.
Definition 3.3.5. For any sequence s = (s1, . . . , sk), the cluster torus is the image of Spec(C[φ±

s;i]) in Spec(U)
or Spec(A).

The union of the cluster tori is called the cluster manifold X ◦. △

Proposition 3.3.6 ([Mul11, Prop 2.6]). The affine closure of X ◦ is U .

4 Cluster varieties and their cohomology

4.1 Louise property
LetA be a cluster algebra and let (x, Q) be a seed ofA. LetQ′ be the quiver obtained fromQ by freezing

some mutable vertices i1, . . . , is, and let A′ be the cluster algebra with initial seed (x, Q′). (Note that x =
(φ1, . . . , φn+m) is some strange collection of rational functions in the xi.)
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Definition 4.1.1. We say A′ is a cluster localization of A if A ⊂ A′ (as subalgebras of Q(x1, . . . , xn+m)), or
equivalently if A′ = A[φ−1

i1
, . . . , φ−1

is
].

The corresponding open subvariety Spec(A′) ⊆ Spec(A) is called a cluster chart. △

Remark 4.1.2. See [Mul11, Prop 11.12] for an example of a freezing which is not a cluster localization.
They find an ice quiver Q where A is finitely generated. However, the cluster algebra A† associated to the
quiver Q† given by deleting a vertex i is not finitely generated. Thus, if the cluster algebra A′ associated to
the quiver Q′ given by freezing the vertex i was a cluster localization, then we have A† = A′/⟨φi − 1⟩, a
contradiction. △

Definition 4.1.3. A cluster variety Spec(A) is called locally acyclic if it has a finite cover by acyclic cluster
charts. △

Theorem 4.1.4 ([Mul11, Thm 4.1, Thm 4.2]). Let Spec(A) be a locally acyclic cluster variety. Then A = U , and
A is finitely generated, integrally closed, and locally a complete intersection.

In what follows, it will be useful to encode the ice quiverQ into an (n+m)×nmatrixB(Q)whose entries
are bij = ℓ if #{i → j} = ℓ > 0 and bij = −ℓ if #{j → i} = ℓ > 0 and bij = 0 otherwise. We say that A has
full rank if the matrix B(Q) has full rank.
Theorem 4.1.5 ([Mul11, Thm 7.7]). If A is a locally cyclic cluster algebra of full rank, then A is regular.

From now on, all cluster algebras will be with frozen variables inverted, i.e., “type (II) or (III)”.
Definition 4.1.6. An edge e of a quiver is a separating edge if there is no bi-infinite path through e. △

Definition 4.1.7. A cluster algebra A satisfies the Louise property if either:
• For some seed (x, Q) of A, the quiver Q is acyclic, or
• For some seed (x, Q) ofA, there exists a separating edge i → j ofQ so thatA(Q \ {i}),A(Q \ {j}), and

A(Q \ {i, j}) all satisfy the Louise property. △

Proposition 4.1.8 ([LS16, pg. 15]). If the Louise property holds for A, then A is locally acyclic.

See [LS16, §4] for more details; as far as I can tell the key ingredient is to show that if i → j is separating
then SpecA is covered by the open subsets Spec(A[φ−1

i ]) and Spec(A[φ−1
j ]). Then one can use the fact

([Mul11, Lem 3.4, Thm 4.1]) that if a freezing A′ of A is locally acyclic, then A′ is a cluster localization.
Theorem 4.1.9 ([MS14, Thm 3.3] plus [GL19, Thm 3.5, Prop 4.9]). The coordinate ringC[Π◦

f ] is a Louise cluster
algebra of full rank.

4.2 Curious Lefschetz for cluster varieties
Recall that complex algebraic varieties come equipped with a mixed Hodge structure: there is a Deligne

splitting Hk(X,C) = ⊕p,qH
k,(p,q)(X). We say H∗(X) is of Hodge-Tate type if Hk,(p,q)(X) = 0 unless p = q,

and we say H∗(X) is split over Q if each summand Hk,(p,q)(X) has a basis coming from H∗(X,Q).
Let X be an even-dimensional affine variety and let [γ] ∈ H2,(2,2)(X,C). We say that (X, [γ]) satisfies

curious Lefschetz if H∗(X,C) is of Hodge-Tate type and if for all s ≥ 0 and p ≤ d, we have

γd−p : Hp+s,(p,p)(X,C) ∼−→ H2d−p+s,(2d−p,2d−p)(X,C).

It is known [LS16, Thm 3.3] that if X satisfies the curious Lefschetz property then its cohomology is split
over Q.

Given an ice quiver Q, define a Gekhtman–Shapiro–Vainshtein form (or GSV form) to be any 2-form

γ =

n+m∑
i,j=1

B̂ij
dxi

xi
∧ dxj

xj

for any (n+m)× (n+m) skew symmetric matrix B̂ extending B(Q).
The main theorems in [LS16] are as follows.
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Theorem 4.2.1 ([LS16, §1.2]).
• Suppose that A is Louise and full rank. Then A is smooth and the mixed Hodge structure of H∗(A,C) is of

Hodge-Tate type and is split over Q.

• Suppose that A is even-dimensional, Louise, and full rank, and let γ be any GSV-form. Then (A, [γ]) satisfies
the curious Lefschetz property.

• Suppose thatA is Louise and full rank. For e := dim(A), we have dimHp+s,(p,p)(A,C) = dimHe−p+s,(e−p,e−p)(A,C).

Proof sketch. The key ingredient is [LS16, Thm 3.5]: if X is a 2d-dimensional smooth affine variety and γ ∈
H2,(2,2)(X), and if U and V are open affine subvarieties so that (U, γ), (V, γ), and (U ∩ V, γ) all satisfies
curious Lefschetz, then so does (X, γ). The proof of this ingredient is basically Mayer-Vietoris and the five
lemma.

We will do an induction. The base case is done by hand [LS16, Prop 8.2]; general theory [Mul11, Thm
6.5] says it suffices to consider isolated cluster algebras rather than acyclic ones in general.

Now, given an even-dimensional, Louise, full rank A, we can find a seed (x, Q) with a separating edge
i → j. We know that U := Spec(A[φ−1

i ]) and V := Spec(A[φ−1
j ]) and U ∩ V := Spec(A[φ−1

i , φ−1
j ]) are even-

dimensional, Louise, full rank, and have fewer mutable vertices; furthermore, the restrictions of any GSV
form γ to these open subvarieties is again a GSV form. By induction, (U, γ), (V, γ), and (U ∩ V, γ) all satisfy
curious Lefschetz; the key ingredient [LS16, Thm 3.5] guarantees that (X, γ) satisfies curious Lefschetz. This
proves all parts of the theorem in the even-dimensional case.

Given an odd-dimensional cluster variety Awhich is Louise and full rank, observe that A×C× is again
a cluster variety which is Louise and full-rank. It is also even-dimensional, so using the result for A × C×

and the fact that Künneth preserves the Deligne splitting gives the desired result.
The last trick we used above has the following useful generalization:

Proposition 4.2.2 ([LS16, Prop 5.11]). Let B̃ and B̃′ be (n +m) × n and (n +m′) × n exchange matrices with
the same top n rows and whose rows have the same integer span. Let A and A′ be the corresponding cluster varieties.
Then A× (C×)m

′ ∼= A′ × (C×)m. Ifm = m′, then we have natural isomorphism Hk,(p,q)(A) = Hk,(p,q)(A′).

In light of this result we say that B̃ has really full rank if its integer span is Zn.

We remark thatA×C× ∼= A′×C× does not implyA ∼= A′ in general, but does imply they have the same
Betti numbers. So the result says that you can add/remove frozen variables somewhat indiscriminately and
the Betti numbers change predictably.

4.3 Examples and computation
Example 4.3.1. Let Q be a type A2n Dynkin quiver with no frozen vertices and let A be the corresponding
cluster variety. The corresponding matrix is really full rank and the Betti numbers are given in [LS16, §6.2]
by the table

H0 H1 H2 H3 . . . H2n−1 H2n

k − p = 0 1 0 1 0 . . . 0 1

Table 1: Type A2n

Wesaw last time that the cluster algebra associated toQ is theCatalan varietyX2,2n+3. Note that dim(Π◦
2,2n+3) =

2(2n+ 1) and dim(X2,2n+3) = 2n. By Poincaré duality and the fact that T acts freely, we get
Hk,(k,k)(X2,2n+3) ∼= H4n−k,(2n−k,2n−k)

c (X2,2n+3)

∼= H
4n−k+(n+2),(2n−k,2n−k)
T,c (Π◦

2,2n+3).

Galashin and Lam showed that H∗
T,c(Π

◦
k,n) records the KR homology of the (k, n − k) torus link, which in

turn records the rational Catalan number Ck,n−k.
Thus, up to renormalization Table 1 records the the Hilbert series of the KR homology of the (2, 2n+ 1)

torus knot, i.e. of the rational Catalan number C2,2n+1(q, t) = qn + qn−1t+ · · ·+ tn. △
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Example 4.3.2. It is known ([FWZ16, Ex 2.6.8]) that the quivers Qk,n defining small quivers are sometimes
mutation-equivalent to acyclic quivers:

In particular, the Catalan varieties X ◦
3,7 and X ◦

3,8 (which are associated to the quivers Q3,4 and Q3,5 with
frozen variables removed, respectively) are equal to the type E6 and E8 cluster algebras. For these cluster
algebras, the matrices are really full rank and and the cohomology is computed as

H0 H1 H2 H3 H4 H5 H6

k − p = 0 1 0 1 0 1 0 1
k − p = 1 1

Table 2: Type E6

H0 H1 H2 H3 H4 H5 H6 H7 H8

k − p = 0 1 0 1 0 1 0 1 0 1
k − p = 1 1 0 1

Table 3: Type E8

to be compared with the rational Catalan numbers

C3,4(q, t) = (q3 + q2t+ qt2 + t3) + qt

C3,5(q, t) = (q4 + q3t+ q2t2 + qt3 + t4) + (q2t+ qt2),

cf. [GL20, Fig 1]. △
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