Rational Cherednik Algebras and Torus Knot Homology

Xinchun Ma

xcma@uchicago.edu, University of Chicago

Definition of the RCA

Fix an integer $n \geq 2$. Let $G = SL_n$ and $W = S_n$.

Fix the maximal torus $T \subset G$ with Lie algebra $\mathfrak{h} \subset \mathfrak{g}$, consisting of diagonal matrices. For any $c \in \mathbb{C}$, define the rational Cherednik algebra $H_c := H_c(\mathfrak{h}, W)$ to be the \mathbb{C} -algebra generated by \mathfrak{h} , \mathfrak{h}^* and W with relations

$$[x, x'] = [y, y'] = 0, \quad wxw^{-1} = w(x), \quad wyw^{-1} = w(y)$$
$$[y, x] = x(y) - \sum_{s \in S} c \langle \alpha_s, y \rangle \langle \alpha_s^{\vee}, x \rangle s$$

where $x, x' \in \mathfrak{h}^*$, $y, y' \in \mathfrak{h}$, $w \in W$, $S \subset W$ is the set of simple reflections and α_s , resp. α_s^{\vee} , is the root, resp. coroot, associated to s. In particular $H_0 = \mathcal{D}(\mathfrak{h}) \ltimes S_n$.

The finite-dimensional representation

For any W-representation τ , we may regard it as a $\mathbb{C}[\mathfrak{h}^*] \ltimes W$ representation by requiring $\mathbb{C}[\mathfrak{h}^*]$ to act trivially and define the
Verma module $M_c(\tau) = H_c \otimes_{\mathbb{C}[\mathfrak{h}^*] \ltimes W} \tau$.

The Verma module $M_c(\tau)$ has a maximal proper submodule with an irreducible quotient $L_c(\tau)$. As τ varries over irreducible Wrepresentations, $L_c(\tau)$'s give a complete list of irreducible objects in $\mathcal{O}(H_c)$. Write $L_c := L_c(\text{triv})$.

Theorem ([BEG03,Theorem 1.2]): When $c = \frac{m}{n}$ for positive integer m coprime to n, the only irreducible finite-dimensional representation of H_c is L_c . Moreover, only when $c = \frac{m}{n}$ for integer m coprime to n does H_c have finite-dimensional representations.

An example

When n = 2, H_c is generated by $x_1 - x_2$, $y_1 - y_2$ and s = (12). We compute

$$(y_1 - y_2)(x_1 - x_2)^k = (\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} - 2c\frac{1-s}{x_1-x_2})(x_1 - x_2)^k = \begin{cases} (2k - 4c)(x_1 - x_2)^{k-1} & \text{when } k \text{ is odd} \\ 2k(x_1 - x_2)^{k-1} & \text{when } k \text{ is even} \end{cases}$$

As a result, for odd positive integer k we have a short exact sequence

$$0 \to ((x_1 - x_2)^k) \to \mathbb{C}[\mathfrak{h}] \to L_{\frac{k}{2}} \to 0.$$

Shuffle generators

Define $K = \mathbb{C}(q,t)(z_1,z_2,\cdots)^{S_{\infty}}$. We endow K with a $\mathbb{C}(q,t)$ -algebra structure via the shuffle product. The shuffle algebra \mathfrak{A} is defined as a certain subspace of K.

- ([SV13]) There is an isomorphism between $\mathfrak A$ and the positive half of the elliptic Hall algebra.
- ([FT11, SV13]) There exists a geometric action of the algebra \mathfrak{A} on $\bigoplus_{n\geq 0} K_{\mathbb{C}^*\times\mathbb{C}^*}(\mathrm{Hilb}^n) \otimes_{\mathbb{C}[q^{\pm},t^{\pm}]} \mathbb{C}(q,t)$.
- The shuffle algebra $\mathfrak A$ can be generated by

$$P_{n,m} = \operatorname{Sym} \left(\frac{\prod_{i=1}^{n} z_{n-i+1}^{\lfloor ic \rfloor - \lfloor (i-1)c \rfloor}}{\prod_{i=1}^{n-1} (1 - qt \frac{z_i}{z_{i+1}})} \prod_{1 \le i < j \le n} \omega(\frac{z_i}{z_j}) \right)$$

for $n \ge 1$, $m \in \mathbb{Z}$ and $\omega(x) = \frac{(1-x)(1-qtx)}{(1-qx)(1-tx)}$.

Results

• **Theorem A**: When m > n for coprime m, n, the bigraded Frobenius character of $L_{\frac{m}{n}}$ with respect to the Hodge filtration F^{Hod} and the Euler field $h_{\frac{m}{n}} := \sum (x_i y_i + y_i x_i)$ is given by

$$\operatorname{ch}_{S_n \times \mathbb{C}^* \times \mathbb{C}^*}(L_{\frac{m}{n}}) = (P_{m,n} \cdot 1)(q, q^{-1}t).$$

This confirms [GN15, Conjecture 5.5].

Let $HHH(T_{m,n})$ denote the Khovanov-Rozansky homology of the (m,n)-torus knot.

Theorem([Mel22, Corollary 3.4]): Up to a constant normalization, the triply graded Euler characteristic $\operatorname{ch}_{a,q,t}(\operatorname{HHH}(T_{m,n}))$ equals $\langle \Lambda(\mathcal{V},a)|P_{m,n}|1\rangle$.

• **Theorem B**: With respect to F^{Hod} and $h_{\frac{m}{n}}$, when m > n for coprime m, n there is a triply graded isomorphism

$$\mathrm{HHH}(T_{m,n}) \cong \mathrm{Hom}_{S_n}(\wedge^{\bullet}\mathfrak{h}, \mathrm{gr}_{\bullet}^F \oplus \mathrm{L}_{\frac{m}{n}}(\bullet)).$$

where the following gradings are matched

internal q-grading $\leftrightarrow h_{\frac{m}{n}}$ -grading

Hochschild homological a-grading \leftrightarrow wedge degree of $\land^{\bullet}\mathfrak{h}$ usual homological t-grading \leftrightarrow filtration on $L_{\frac{m}{2}}$

This confirms [GORS14, Conjecture 1.2].

- Theorem C: $F^{\text{Hod}} = F^{\text{ind}} = F^{\text{alg}}$ on $L_{\frac{m}{n}}$ when m > n for coprime m, n and on $(L_{\frac{m}{n}})^{S_n}$ for all m > 0 coprime to n.
- Corollary: For all m > 0 coprime to n, with respect to the algebraic filtration, Theorem B holds.

A diagram

Let $c = \frac{m}{n}$ and $V := \mathbb{C}^n$ be the standard representation of GL_n . $F\mathcal{O}(H_c)$: the category of filtered modules in $\mathcal{O}(H_c)$

 FC^G : the category of mirabolic $\mathcal{D}(\mathfrak{g} \times V)$ -modules.

 N_c : cuspidal mirabolic D-module.

Two dg modules

Define weights:

$$\mu_{\lceil c \rceil} := (\lceil c \rceil, \lceil 2c \rceil - \lceil c \rceil, \dots, \lceil nc \rceil - \lceil (n-1)c \rceil).$$
 $\mu_{|c|} := (\lfloor c \rfloor, \lfloor 2c \rfloor - \lfloor c \rfloor, \dots, \lfloor nc \rfloor - \lfloor (n-1)c \rfloor).$

Cuspidal dg module of slope c:

$$\mathcal{A}_c := (\pi_{G \times B(\mathfrak{n} \times \mathfrak{X}) \to \mathcal{B}})^* \mathcal{L}_{\mu_{\lceil c \rceil}} \otimes^L \mathcal{A}$$

Catalan dg module of slope c:

$$\mathcal{A}'_c := (\pi_{G imes^B(\mathfrak{n} imes \mathfrak{n}) o \mathcal{B}})^* \mathcal{L}_{\mu_{|c|}} \otimes^L \mathcal{A}'$$

Theorem A is shown via the following:

- Theorem([CEE09]): $\mathbb{H}_{-c}(\mathbf{N}_c) \cong \mathcal{L}_c^{S_n}$. $\Rightarrow \operatorname{ch}_{\mathbb{C}^* \times \mathbb{C}^*}(\Gamma(\widetilde{\operatorname{gr}}^{\operatorname{Hod}}\mathbf{N}_c)^{\operatorname{GL}_n}) = \operatorname{ch}_{\mathbb{C}^* \times \mathbb{C}^*}(\mathcal{L}_c^{S_n}).$
- Laumon's formula $\Rightarrow \widetilde{\operatorname{gr}}(\mathbf{N}_c) = Rp_*\mathcal{A}_c \boxtimes \mathcal{O}_V$
- \bullet A "shuffle argument" of Neguț \Rightarrow

$$\operatorname{ch}_{\mathbb{C}^* \times \mathbb{C}^*}(\Gamma(\mathcal{A}_c)^{\operatorname{GL}_n}) = \operatorname{ch}_{\mathbb{C}^* \times \mathbb{C}^*}(\Gamma(\mathcal{A}'_c)^{\operatorname{GL}_n}).$$

• Localization formula $\Rightarrow \operatorname{ch}_{\mathbb{C}^* \times \mathbb{C}^*}(\Gamma(\mathcal{P} \otimes \mathcal{A}'_c)^{\operatorname{GL}_n}) = P_{m,n} \cdot 1.$ \mathcal{P} : Procesi bundle.

Conjecture: There exists a $GL_n \times \mathbb{C}^* \times \mathbb{C}^*$ -equivariant isomorphism: $Rp'_*\mathcal{A}'_c \cong q^{1-n}Rp_*\mathcal{A}_c$..

References

CEE09: Calaque-Enriquez-Etingof, Universal KZB equations...

FT11: Feigin-Tsymbaliuk, Equivariant K-theory of Hilbert schemes...

GN15: Gorsky-Neguţ, Refined knot invariants and...

GORS14: Gorsky-Oblomkov-Rasmussen-Shende, Torus knots and...

Mel22: Mellit, Homology of torus knots

SV13: Schiffmann-Vasserot, The elliptic Hall algebra and...